{ "cells": [ { "cell_type": "markdown", "metadata": { "tags": [ "remove_cell" ] }, "source": [ "
\n", "
\n", "

Ingenieurinformatik – Übung

\n", " Lehrstuhl Computational Civil Engineering
\n", " Kontakt: Email senden | Individuelle Kontakte siehe Webseite des Lehrstuhls
\n", " Links: \n", " Vorlesungsskript | \n", " Webseite des Lehrstuhls\n", "
\n", "
\n", " \n", "
\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Numpy Arrays" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Diese Aufgabe wiederholt einige grundlegende Konzepte der Arraymanipulation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Aufgabenteil A\n", "\n", "### Aufgabenstellung\n", "\n", "1. Benutzen Sie `np.sin` um ein Array zu erstellen, das Sinuswerte, ausgewertet auf dem Intervall $[0,2\\pi]$, enthällt.\n", "1. Plotten Sie die Funktion.\n", "1. Berechnen Sie mithilfe von Slices die Ableitung, indem Sie jeweils zwei aufeinander folgende Elemente voneinander subtrahieren und durch die von Ihnen gewählte Schrittweite teilen.\n", "1. Plotten Sie die Ableitung mit in den zuvor erstellten Plot." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lösungshinweis\n", "\n", "Wenn Sie alles richtig gemacht haben, sollten Sie eine Sinus und eine Cosinus Kurve sehen." ] }, { "cell_type": "markdown", "metadata": { "tags": [ "loesung", "hide-cell" ] }, "source": [ "### Lösungsvorschlag" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "loesung", "hide-cell" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd1yV5f/H8dfFRhBRUVRAQBH3BPdE07SvaUOblpVme1tp2R5fK1u208rGN63M1NQ0B67cG5ygoiBuZG+4fn/cx35kLPGcc90HrufjcR5wzrnH+/YgH677vu7rElJKNE3TNO1yOakOoGmapjkmXUA0TdO0KtEFRNM0TasSXUA0TdO0KtEFRNM0TasSF9UB7MnPz0+GhIRUad2srCy8vLysG8iOHD0/OP4xOHp+cPxjcPT8oOYYtm/ffk5K2eDS12tUAQkJCWHbtm1VWnf16tUMGDDAuoHsyNHzg+Mfg6PnB8c/BkfPD2qOQQhxrLTX9SksTdM0rUp0AdE0TdOqRBcQTdM0rUp0AdE0TdOqRBcQTdM0rUqUFhAhxNdCiDNCiNgy3hdCiOlCiHghxB4hRJcS740VQsRZHmPtl1rTNE0D9S2QWcDQct4fBrSwPCYAnwEIIeoBLwHdgW7AS0KIujZNqmmapv2D0vtApJRrhRAh5SwyEvhOGmPObxJC+AohGgMDgOVSyhQAIcRyjEI02yZBT+wg5OhscN8L7j7gGwR+LaF2IxDCJrt0JFJKTqTmkJiSQ2p2Pmk5BTg5CdxdnPCt5UZQXU8C6nri7uKsOqqmVX/FRXAhAc4dgoxTkJcOuenQ8yGoVc+quzL7jYQBQGKJ50mW18p6/V+EEBMwWi/4+/uzevXqyw7R5MQfhB+bA8fm/OP1ApfaXKjbnlTfDpzz60G+u3kbQZmZmVU69tIUS0lCejGx54rYe66I4xnF5BSWv46TgODaTrSo60RbP2fa1nfGxenyiq81j0EFR88Pjn8Mjp4fSj+GWlnH8Tu3hboXduOTfgDn4vx/vC9xYmtuMNleTa2axewFpLTfMLKc1//9opRfAl8CREZGyqrdwTmA1dFDGNAjAnLT/q7urid20PDoGhrGbSA8/ktoFgWdx0DrEeBsrn9aa9y9eiI1h7nbkpi7I5HElFwA2gfUYVRLX1o2qk0zPy/qerlRx9OVYinJLSjmQnY+x89nc+RcJtuPXWDN8VT+PFaIj4cLQ9s14s6eIbQLqGO3Y1DJ0fOD4x+Do+eHEseQmw47f4DdP8KpGOPNhm2h6zho1M44S1InANx9EG5edLPB2RJz/Zb7tyQgqMTzQCDZ8vqAS15fbdMkwhk8fY1H3WBo1t94XUo4ewBifoE9P8Pcu6FuCPR8GLrcCS7uNo1lD/FnMvh09WEW7EqmWEp6Na/P44PCGdCyAfW9Kz6+riH/32zOKyxifdw5FsecZPGek/y8LYluIfV4IKo5A8IbIPQpQU0rl2t+Gqx4GbZ+DXlp0KQzDH0L2l5nnFa3I7MXkIXAw0KIORgXzNOklCeFEMuAN0tcOB8CTFaSUAho2BoGvQhRU+DgYlj/ASyZCBs/hsGvGi0SB/zFeCYjl2nLDvLL9iTcXZwY2zOEu3uHEFSvVpW36e7izKDW/gxq7U/6iAJ+3prIrA0J3P3NVrqH1mPSsFZ0bmreU4GapkxBLmz+nO6b34KiHGgzEno/BgFdKl7XRpQWECHEbIyWhJ8QIgmjZ5UrgJTyc2AJcA0QD2QDd1veSxFCvAZstWzq1YsX1JVycoLW10Kr4XB4JSybAj/fCaH9YMRHRsvEARQVS7756ygfrIgjr7CI8X1Cub9/80q1Ni6Hj4cr4/s2486eIczZepzpK+O4/tMN3N69Kc8MbUUdT1er7k/THNbRdbDwEbhwlNT6XfG75VNoEK46lfJeWLdW8L4EHirjva+Br22R64oJAWFXQegA2DELlr8Mn/aCwa9A1/Gmbo0cP5/NxF92syUhhaiWDXjx2raE+tl26Gg3Fyfu7BnCjV0CeX/5Ib7+6yjL953mrVEdiGrZ0Kb71jRTy8uEla/Ali+hbijcMZ/YRMEAExQPUH8fSPXm7GIUjIc2QdMexmmtObdDTqrqZKWauz2JoR+uZf+pdN67qSNf39XV5sWjJC93F6YMb8OCh/pQz8uNu7/ZyhuL95FfWGy3DJpmGmf2w5cDYMsM6P4APLABmkepTvUPuoDYQ51AGPMrDJ0Kccvgi36QvFN1qr/lFxbzwvxYJv6ymw6BdVj2eD9u6BKo7IJ2+8A6zH+oN3f0CGbGuqOM/nwDJ9NylGTRNCVi5sKMgUavz7ELYdhUcKv6tUdb0QXEXoSAHg/A3X9AcSF8PRT2LVSdirMZedw6YxPfbzrGff2a8cO47jTx9VQdCw9XZ167rh2fj+nC4bNZjPz4L46mFamOpWm2VVwMy1+EX8dB445w31rjGqpJ6QJib0HdjB+KRu2NC+wbPzG6AiuQcC6LGz/bwN7kND6+rTOTr2mNi7O5fiSGtmvMrw/0ws3Fif9uzuWPmJOqI2mabRTmwbzx8NeHEDkOxv4OPo1VpyqXuX5b1BRefsYPR+trYdlzsOx5uxeRXYmp3PjZBjLzCpl9bw+Gd2hi1/1fjpaNajP/od409XHiwR93MHvLcdWRNM26ctPg+xsg9le46mX4z7vgbP5eiLqAqOLqCaO/hW73waZPYPFTRvPVDrYcTeG2GZuo5e7M3Pt7OsR9F37e7jzT1YP+4Q2YPC+GmeuOqI6kadZxsXgkboIbZkKfJ0zdU7Mks99IWL05OcGwt8DVw2i2FuXDtR+Ck+0GHdxyNIW7vtlC4zoezL63Bw19PGy2L2tzcxZ8eUckj/+0k9cX7ye3oIiHB7ZQHUvTqi4nFb6/3hiKZPS30Hq46kSXRRcQ1YSAq14BFw9Y8xYIJ6OI2OAvkK0JRvFo5IDF4yI3Fyem39IZD5c9TPvzEB6uzozv20x1LE27fDmp8N1IOL0Xbv4eWg5Tneiy6QJiBkJA1HNG76x17xpDLl/1slV3kZBWxDtfG8VjjoMWj4tcnJ14e1QHcgqKeH3xfmq5uXBbd+uOMqppNlWQA7NvtRSPH6BledMimZcuIGYy8AXIToH174NnXWOcGytIOJfFu9tz8a3lyY/jHbt4XOTi7MSHt3Qm5/ttPD8/Bi93Z0Z2KnVEf00zl6JC+HU8HN8Io75y2OIB+iK6uQhh9L5oe4PRF3zXj1e8ybMZeYz9ZgtSwnfjutGojuMXj4vcXJz4fEwE3ULqMfGX3Ww6cl51JE0rn5Sw+Ak4sMi4/tnuRtWJroguIGbj5AzXfwGh/WHho5DwV5U3lZ1fyD2ztnI6PZfHIzxo3sDbikHNwcPVmS/viKRpvVrc9/12Dp/NVB1J08q27l3Y8R30nQjd71Od5orpAmJGLm5w07fG6L0/3Q7nD1/2JqSUTPxlN3uT0/jkti6E+Vbf6WTr1HLlm7u64eIkuPubrZzPzFMdSdP+7cBiWPUatB8NA6eoTmMVuoCYlWdduO0n4/sfb4acC5e1+ker4lkSc4pJw1oxqLW/DQKaS9P6tZg5NpLT6bnc/8N2Cor0AIyaiZyKhV/vhYAIY2oHB7nPoyK6gJhZ/eZw8/+MKXTnTaj0jYZLY0/x3vJD3NA5gHtrUBfXzk3r8s7ojmxNuMAbi/erjqNphsyzRo8rDx+45UfjJuJqQhcQswvpDUP/C3F/GudPK3DwVAZP/ryLjkG+vHlD+xo3ReyIjk0Y3yeUWRsS+G1nkuo4Wk1XVGhMc511xigedp5y1taUFhAhxFAhxEEhRLwQYlIp778vhNhleRwSQqSWeK+oxHvqh7W1pa7jof1NEP0GxK8sc7HMvEIe+N92vNxd+PKOCDxcq+91j/JMGtaKHs3qMXleDHuT01TH0Wqy1f+FhHUw/H2lU8/airICIoRwBj4BhgFtgFuFEG1KLiOlfEJK2UlK2Qn4CJhX4u2ci+9JKUfYLbgKQsC1Hxhzr/86HlIT/7WIlJLnf4sh4VwW02/pjH81uNejqlycnfj4ti74erpx/w/bScspUB1Jq4niVsC6adD5Duh0m+o0NqGyBdINiJdSHpFS5gNzgJHlLH8rMNsuyczIzQtu+h6KCuCXu4yvJfy0NZEFu5J54qpwejavryajifh5u/PpmC6cTM3luXkxSEVD5ms1VFoSzLsXGraFa95RncZmhKr/WEKIUcBQKeV4y/M7gO5SyodLWTYY2AQESimLLK8VAruAQmCqlHJ+GfuZAEwA8Pf3j5gzZ06V8mZmZuLtrf4+igZn1tN23zscazqao83GAJCYUcyrG3MIr+vEU5EeOJVy3cMs+a9EVY5h8ZF8fjlUwN1t3egfpHZ47Jr6GZiJPfKL4iI67Xoer6yjbI94l5xagVbdvorPICoqaruUMvJfb0gplTyA0cDMEs/vAD4qY9lnL30PaGL52gxIAJpXtM+IiAhZVdHR0VVe1+p+e1DKl+pIeXS9zM4rlAOnRcuury+XZzNyy1zFVPmrqCrHUFRULG+fsUm2nLJExp1Ot36oy1BTPwMzsUv+1W9J+ZKPlLt/tsnmVXwGwDZZyu9UlaewkoCgEs8DgeQylr2FS05fSSmTLV+PAKuBztaPaFLD3oJ6oTBvAh8u2sLhs1m8d1Mn/LzdVSczHScnwXs3dcTLzYWHf9xJboGeFlezoRPbYfVU42bBDqNVp7E5lQVkK9BCCBEqhHDDKBL/6k0lhGgJ1AU2lnitrhDC3fK9H9Ab2GeX1Gbg7g03zqQ44xTtdr7M3b2C6dPCT3Uq02ro48G0mzpy4FQG7yw7qDqOVl3lZxn3a9VuDNdMU53GLpQVECllIfAwsAzYD/wspdwrhHhVCFGyV9WtwBxLM+qi1sA2IcRuIBrjGkjNKSBAat32fO50M8OdNzE5KFZ1HNOLatmQO3oE8/VfR9lyNEV1HK06+vMFY9ih6z8DT1/VaexC6XDuUsolwJJLXnvxkucvl7LeBqC9TcOZ3AsL9rIs5xruCtxPrT8nQVgU1K7+Q5ZciUnDWrHm0Fkm/rKbPx7ri5e7ns1As5K45bDtK+j5MIT2U53GbvSd6A7o993J/L47mUevakmt0V9AfjYsesIYKlork5e7C9NGdyTxQjZT/zigOo5WXeSmwcJHoGEbGPRixctXI7qAOJiUrHxeWriXjkG+3N+/OTQIN0b2PLgYYuaqjmd63ULrcU/vUL7fdIy/4s+pjqNVB3++AJmnYeQn4FKzOrLoAuJgXlu0j4zcAt6+sQMuzpaPr+dDENgV/ngaMk6rDegAnr66Jc38vHhm7h4y8wpVx9Ec2ZE1sONb49RVNRyqpCK6gDiQ6INn+G3nCR4YEEbLRrX//w0nZxj5qXEqa/GT6gI6CA9XZ94Z3ZHktBym6V5ZWlXlZ8Pvj0K9ZhD1nOo0SugC4iAy8wp5fl4MLRp681BU838v0CAcoiYbU2XuX2T/gA4mIrguY7oH8+3GBHYlpla4vKb9S/QbxlQLIz6qVkO0Xw5dQBzEO0sPcDI9l6k3dsDdpYxRdns+bIy988czkJdh34AO6OmhLWlY253J82L0BFTa5UnaBps+hch7IKSP6jTK6ALiALYfS+G7TccY2zOEiOC6ZS/o7GqM2pueDNH/tV9AB+Xj4corI9qy/2Q6X68/qjqO5iiKCuH3x4wbBq96RXUapXQBMbnComKe/y2Wxj4ePH11y4pXCOoGkXfD5s8geZftAzq4q9s2YnAbf95fcYjElGzVcTRHsHUGnI6FoVONWQZrMF1ATO67jcc4cCqDF69tU/kb3wa9BLX8YNHjUKzHfiqPEIJXRrTFWQienx+rh33Xypd+Ela9AWFXQetrVadRThcQEzuTnst7yw/RP7wBV7e9jKkwPX2NaXCTd8LWmbYLWE008fVk4tUtWXvoLEtjT6mOo5nZn1OgKB+GvW1M9FbD6QJiYm8u2U9+YTGvjGh7+XObt7sRmg+EVa9D5hnbBKxG7ugRTKtGtXl98X5y8nWrTSvFkTUQOxf6PAH1S+kJWQPpAmJSGw+fZ/6uZO7v34wQP6/L34AQxl9JBTmwsmZf6KsMF2cnXh3ZjhOpOXy2Ol51HM1sCvNhyUSoGwJ9HledxjR0ATGhgqJiXlwQS1A9Tx6MCqv6hvxaQI8HYOcP1E4/ZL2A1VS30HqM7NSEz9ce4fh5fUFdK2Hjx3DuEAx7p8be81EaXUBM6Ju/jhJ3JpOXr22Lh2sZ93xUVr+nwdufFnEzoFjf61CR565pjauT4NVFNWp2AK086cmw9h1oNRzCh6hOYyq6gJjM2Yw8pq+MZ2CrhgxqbYXh2T184KqX8ck4BHuqNh98TeLv48Gjg1qwYv9pog/qa0casPJVKC6EIa+rTmI6uoCYzHvLD5FbUMSU/7S23kY73EJ67XBY/hLkpltvu9XU3b1DadbAi1d/30deob6gXqOd2A67ZxsDltYLVZ3GdJQWECHEUCHEQSFEvBBiUinv3yWEOCuE2GV5jC/x3lghRJzlMda+yW1jX3I6P209zp09Q2jWwNt6G3ZyIq7FBMg6A2vftt52qyk3FydevrYtR89lMeuvBNVxNFWkhKWTwash9NGDlJZGWQERQjgDnwDDgDbArUKINqUs+pOUspPlMdOybj3gJaA70A14SQhRzhgf5iel5LVF+/DxdOWxQS2svv0MnxbQeQxs+syYdlMrV7/wBgxs1ZCPo+NJycpXHUdTIfZXSNwMg16o8Xecl0VlC6QbEC+lPCKlzAfmACMrue7VwHIpZYqU8gKwHBhqo5x2sXzfaTYeOc+Tg8OpU8vVNjsZ+CI4u8OKl2yz/WrmuWtakZ1fxIcrdA+2Gqcgxzjl26g9dLpddRrTUjkpdACQWOJ5EkaL4lI3CiH6AYeAJ6SUiWWsG1DaToQQE4AJAP7+/qxevbpKYTMzM6u8bkUKiyUvrM+hiZcgIOcoq1cnWH0fmZmZrN6+n+CAkYTu/5Gd8z8lzbe0Bp952fIzKEv/QGe+33SMls5naOJ9ZX9vqchvbY5+DJXNH5zwM6HpSexs9gBpa9fZPthlMNVnIKVU8gBGAzNLPL8D+OiSZeoD7pbv7wdWWb5/GphSYrkXgKcq2mdERISsqujo6CqvW5EZaw/L4GcXyegDp222j7/z52VKOa2llF9GSVlcbLP92YItP4OynMvIle1eXCrHzdpyxdtSkd/aHP0YKpU/7YSUrzeScs4Ym+epChWfAbBNlvI7VeUprCQgqMTzQCC55AJSyvNSyjzL0xlARGXXdRQpWfl8uDKOAS0bMKBlQ9vv0M0LBr5g9C7ZO8/2+3Nw9b3deTAqjBX7z7BBz6FeM6x6w+i2O/hV1UlMT2UB2Qq0EEKECiHcgFuAhSUXEEI0LvF0BLDf8v0yYIgQoq7l4vkQy2sO56NVcWTlFfL8NVbstluRjreAf3tY8TIU5Npvvw7q7t4hBPh68vri/RQV69F6q7XT+2D3j9D1Xt1ttxKUFRApZSHwMMYv/v3Az1LKvUKIV4UQIyyLPSqE2CuE2A08CtxlWTcFeA2jCG0FXrW85lASU7L5YdMxbooMooV/7YpXsBYnZxjyGqQehy1f2m+/DsrD1Zlnh7Vi38l05u1IUh1Hs6WVr4Bbbeg3UXUSh6D0PhAp5RIpZbiUsrmU8g3Lay9KKRdavp8spWwrpewopYySUh4ose7XUsowy+MbVcdwJab9eRBnJ8HjV4Xbf+fNoyBsMKydBtkOV3vt7toOjekU5Mu0Pw/q0Xqrq4S/4NBSY7DEWvVUp3EI+k50RWJPpLFgVzL39A6lUR0PNSGGvAb5GbBG31xYESEEz13TmtPpeczakKA6jmZtUhrd22s3ge73q07jMHQBUeStpQfwreXKff0VzivQsLXRx33bV8bpLK1c3ULrMbBVQz5bHU9adoHqOJo17V8ISVshajK41VKdxmHoAqLA+rhzrIs7x8NRYdTxtNFNg5U1YBIgYPVUtTkcxNNXtyQjr5DP1ui7+auNogJjwMQGraDjbarTOBRdQOysuFgydel+Anw9uaNnsOo4UCcQut1rDBh35kDFy9dwrRv7cF2nAL756yin0nQPtmphx3dwPh4GvQTOKu+tdjy6gNjZopiTxJ5I56kh4bi7XOFcH9bS9ylw84ZVr6lO4hCeHBxOsZR8uDJOdRTtSuVlGq3vpj2h5TDVaRyOLiB2lF9YzLRlB2nVqDYjO5U68ooatepBr0fgwCJI2qY6jekF1avF7d2D+XlbIofPZqqOo12JTZ8ao1QPftWYBlq7LLqA2NHsLcc5npLNpGGtcHYy2Q9rjwehlp9xc6HUN8tV5OGBYbi7OPHunwdVR9GqKjsFNnwELf8DQd1Up3FIuoDYSU5+ER9Hx9MtpB79wxuojvNv7t7Q/xlIWAdHolWnMT0/b3fG923GkphT7E5MVR1Hq4oNH0FeBgx8XnUSh6ULiJ18vymBsxl5PDUkHGHWpnLEXeDbFFa8oudPr4R7+4ZSz8uNt5fpzgcOJ/MsbP4c2t0I/m1Vp3FYuoDYQWZeIZ+tPkzfFn50b1ZfdZyyubjDgOfg5C7Yv0B1GtOr7eHKw1Fh/BV/Xg+06GjWvw+FuTBgsuokDk0XEDv4Zv1RLmQXMHFIS9VRKtbhJmjQ2hiRtKhQdRrTu617Uxr5ePDu8kMXpxbQzC7tBGydadzz4RemOo1D0wXExtKyC/hy3REGt/GnY5Cv6jgVc3I2zgmfj4PYuarTmJ6HqzMPDQxj+7ELrDl0VnUcrTLWTQNZbFzz066ILiA2NmPdETJyC3lysIIBE6uq1XBo1MHoH69bIRW6OTKIAF9P3tOtENPzyDlt3DjY5U6oa4IbeR2cLiA2dD4zj6//OsrwDo1p3dhHdZzKEwKinoMLR4071LVyubk48eigMPYkpbFi/xnVcbRyBB+bA04u0O9p1VGqBV1AbOjzNYfJLShSM1z7lQofCk06w9q3oTBfdRrTu6FLIMH1a/He8kMU60mnzOlcHI1OrYau48GncYWLaxVTWkCEEEOFEAeFEPFCiEmlvP+kEGKfEGKPEGKlECK4xHtFQohdlsfCS9dV7Ux6Lt9tPMb1nQMJa+itOs7lEwKinjdG6d31P9VpTM/V2YnHBrVg/8l0lu09pTqOVproNyl2coPej6tOUm0oKyBCCGfgE2AY0Aa4VQjR5pLFdgKRUsoOwFyg5MQVOVLKTpbHCEzmk+h4iooljw1qoTpK1YVdBYHdjEmnCvMqXr6GG9kpgOYNvHh/xSE99a3ZnIqFvfNIChwO3ia8kddBqWyBdAPipZRHpJT5wBxgZMkFpJTRUspsy9NNQKCdM1ZJ0oVsftxynJu6BtG0vgPPLXDxWkh6knHhUSvXxdklD53OZNGeZNVxtJKi3wT3OiQGXa86SbWicuziACCxxPMkoHs5y48D/ijx3EMIsQ0oBKZKKeeXtpIQYgIwAcDf35/Vq1dXKWxmZmal1/06Ng8pJZGeZ6u8P2u7nPz/IKFTnTZ4rniTzRlNKXZ2t3q2yqryMdiRl5QEegv+u3A33imH/jHmmSPkr4gjHoN3RjyRBxdzNOQ2UvNwuPyXMtVnIKVU8gBGAzNLPL8D+KiMZcdgtEDcS7zWxPK1GZAANK9onxEREbKqoqOjK7Xc8fNZsvnkxfKlBbFV3pctVDZ/qY6slfIlHyk3fmq1PFVxRcdgR3/EnJTBzy6Sv2xL/MfrjpK/PA55DD/eKuV/g6TMSXXM/JdQcQzANlnK71SVp7CSgKASzwOBf7X7hRBXAc8DI6SUf5+Il1ImW74eAVYDnW0ZtrI+iY7HyUnwwACFU9VaW2hfCOkL696D/OyKl6/hrm7rT7sAHz5ceYiCIj2mmFIn98DBxdDjIfCoozpNtaOygGwFWgghQoUQbsAtwD96UwkhOgNfYBSPMyVeryuEcLd87wf0BvbZLXkZElOymbs9iVu7BuHv46E6jnVFPW/Mm7B1puokpieE4MnB4SSm5DBvR5LqODXbmrfAvQ50v091kmpJWQGRUhYCDwPLgP3Az1LKvUKIV4UQF3tVvQN4A79c0l23NbBNCLEbiMa4BqK8gHy6+jBOQnB/dWp9XBTcE5oPhL8+MGZx08oV1bIhHQLr8HF0vG6FqHIq1pgkrcf94OkAwwg5IKX3gUgpl0gpw6WUzaWUb1hee1FKudDy/VVSSn95SXddKeUGKWV7KWVHy9evVB4HwInUHOZuT+TmrkE0ruOpOo5tDHgOss/rVkglCCF4dGALElNy+G3nCdVxaqa1b4NbbejxgOok1Za+E91KPo2OB6he1z4uFdTVaIVs+Ajys1SnMb1BrRvSLsCHT6LjKdStEPs6vQ/2LTBOXXnWVZ2m2tIFxAqSU3P4eVsiN0UG0cS3mrY+Luo/CbLPwbavVScxvYutkGPns5m/S98XYldr3wE3b+j5kOok1ZouIFbw+ZrDQDVvfVzUtDuE9oe/puseWZUwuI0/bRr78PGqOH13ur2cOQB7f4NuE6BWPdVpqjVdQK7QqbRc5mxJZFREIIF1Hfiu88vR/1mjR9aOb1UnMT0hBI8OakHC+Ww2ndRD49vFumngWgt6Pqw6SbWnC8gV+nzNYYql5MEBNWhms5Dexn0h6z+AglzVaUxvSBt/WjWqze+HC3QrxNbOxUHsr9BtPHiZeProakIXkCtwOj2XH7cc58YugQTVqyGtj4v6PwOZp/QYWZXg5CR4bFALTmVLPUaWra19B1w8oOcjqpPUCLqAXIHP1xymqFjyUFQNan1cFNIXmvaE9e/rkXor4eq2jQj0Fkxfqa+F2Mz5wxDzC0Teo0fctRNdQKroTHouP24+zg2dAxx7xN2qEsK4FpKRDDu/V53G9JycBCPC3Dh8NovFMSdVx6me1k4DZzfo/ZjqJDWGLiBV9MXaIxTW1NbHRc0GGPOFrHtfz1pYCZH+zoT7e/PRyjg9a6G1pRyBPT9ZWh8NVaepMXQBqYKzGXn8b/MxRnZqQoifl+o46ggBA5415gvRsxZWyEkIHhnYgrgzmSyJ1a0Qq1r3Lji76taHnekCUgUz1h0hv7CYRwY68GyD1tJ8EAREGCP1FrRPRSwAACAASURBVBWoTmN617RvTPMGXkzXrRDruZAAu+dAxF1Qu5HqNDWKLiCX6VxmHt9vPMbITgGE1uTWx0UXr4WkHTf+E2vlcnYy7gs5dDqTpXrudOtY9x4IJ936UEAXkMs0Y90R8gqLeHhgDb72cakWQ6BxJ+MGLt0KqdDwDk1oplsh1pF63Dh92mUs+DRRnabG0QXkMqRk5fP9xmNc27EJzRt4q45jHhdbIRcSjG6UWrmcnQSPDAzjwKkM/tynWyFX5GLro88TqpPUSJUqIEKIhkKI64UQDwkh7hFCdBNC1LjiM2PdEXIKinhEtz7+reUwaNTe6EpZpIfsqMi1HZoQ6ufFhyvjdSukqtKSYOcP0HkM1AlQnaZGKrcICCGihBDLgMXAMKAx0AaYAsQIIV4RQvjYPqZ6mfmS7zYk8J/2jQlrWFt1HPO52ApJOWwMJaGVy8XZiYejwth/Mp3l+0+rjuOY1r9vfO3zpNocNVhFrYhrgHullF2llBOklFOklBMtEzt1BHYCg6u6cyHEUCHEQSFEvBBiUinvuwshfrK8v1kIEVLivcmW1w8KIa6uaobKWppQQHZBEY8O0j2vytTyP9CwrTGcRHGR6jSmN7JTE0Lq12L6yjik1K2Qy5KebAyj0/l28A1SnabGKreASCmfllIeL+O9QinlfClllf7cFEI4A59gtGzaALcKIdpcstg44IKUMgx4H3jLsm4bjDnU2wJDgU8t27OJ1Ox8Vhwr4Jp2jQn3162PMjk5GWNknY8zhtPWyuXi7MRDUWHsTU5n5f4zquM4lvUfgCzWrQ/FKnsN5HshRJ0Sz0OEECuvcN/dgHgp5REpZT4wBxh5yTIjgYtjhs8FBgkhhOX1OVLKPCnlUSDesj2b+Hr9UXKL4JFB+tpHhVqPgAatLa0QPQtfRa7rHEBQPU8+1K2Qyks/CdtnQcdboW6w6jSmF38mg7u/2cLx89afv8elksutBzYLIZ4EAoCngaeucN8BQGKJ50lA97KWkVIWCiHSgPqW1zddsm6pV9GEEBOACQD+/v6sXr36soPGxOXRxU9y6sAOTh247NVNITMzs0rHXhUNGvyHtvumsXfum5xt2Mdq27XnMdhCWfmvalLEN7FpfPjLSjo1rOx/STXM8Bk0j59JYFEBm936kHuZWcyQ/0pd7jF8sTuX7WeK2LV9M0fchHXDSCkr9QD6AAXASaBRZdcrZ3ujgZklnt8BfHTJMnuBwBLPD2MUkE+AMSVe/wq4saJ9RkREyKpauWpVldc1g+joaPvtrKhQyo8ipfykh5RFRVbbrF2PwQbKyp9fWCR7T10pR3y8XhYXF9s31GVS/hmkn5LytYZS/vZAlVZXnt8KLucYjpzNlKGTFsk3Fu+7on0C22Qpv1MrewrrDuBr4E5gFrBECNHxCmtXElDy6lcgcOlkCX8vI4RwAeoAKZVc16qchJUrd3Xm5Az9noEz++DA76rTmJ6r5VrI7sRU1hw6qzqOuW2Ybtys2vdKT4DUDB+visfV2YnxfUNtsv3K3stxI9BHSjlbSjkZuB+jkFyJrUALIUSoEMIN46L4wkuWWQiMtXw/ClhlqYYLgVssvbRCgRbAlivMo1lTuxugfhiseVtfC6mEG7sEEuCrr4WUK/MsbP0KOtwE9ZurTmN6x85nMX/XCW7vHkzD2h422UelCoiU8jop5ZkSz7fw7+sVl0VKWQg8DCwD9gM/Syn3CiFeFUKMsCz2FVBfCBEPPAlMsqy7F/gZ2AcsBR6SUup+o2bi5Az9nobTsXBwieo0pufm4sQDA5qz83gq6+LOqY5jThumQ1Ee9J2oOolD+CQ6Hhcnwf39m9lsHxXdSDhFCFGvtPeklPlCiIFCiOFV3bmUcomUMlxK2VxK+YbltRellAst3+dKKUdLKcOklN2klEdKrPuGZb2WUso/qppBs6F2o6BeM1jzFui/qis0OjKQxnU8dCukNFnnYOtM42fKT/eGrEhiSjbzdpzg1m5Naehjm9YHVNwCiQF+F0KsFEK8I4R4RgjxoqVbbwxwLbDZZuk0x+bsYvy1eGoPHNQ1viLuLs48OKA5249dYMPh86rjmMuGj6Agx2jVahX6dHU8TkJwf3/bnuqrqICMklL2xjjNtBdwBtKBH4BuUsonpJT6qp9Wtg43Q90Q3QqppNGRQfj7uPPhCt0K+VvWedgyw7iu1iBcdRrTS7qQzdztSdzSLYhGdWzX+oCKC0iEECIYuB3jwvUXwHcYF8A9bZpMqx4utkJO7oK4P1WnMT0PV2ce6N+cLQkpbDyiWyEAbPoECrKNnn1ahT5bfRjA5q0PqLiAfI5xkboVsK3EY7vlq6ZVrOMt4NsUVk/VrZBKuKVbUxrWdmf6yjjVUdTLToHNX0Lb66BhK9VpTC85NYeftyVyU2QQTXxt/zd+RWNhTZdStga+llI2K/EIlVLa7tK+Vr04uxr99pN3QPyVjoBT/Xm4OnN//+ZsOpLC5preCtn0KeRn6NZHJX2+xmh9PDDAPt2cK9uN9wFbB9GquY63QZ0gWKNbIZVxW/em+Hm782FNboXkXIDNXxjjq/lfOs6qdqlTabnM2ZLIqIhAAuvWsss+a9ykUJoiLm7GrHFJW+HwKtVpTM9ohTRjw+HzbE1IUR1HjU2fQ166Mc+MVqHP1xymWEoeHGC/bs66gGj203kM+AToHlmVdHv3YPy83WrmtZCcVNj0GbQaDo3aqU5jemfSc5m95Tg3dAkgqJ59Wh+gC4hmTy7uRiskcTMcXaM6jel5ujkzoV8z1sWdY/uxC6rj2NfmLyAvTbc+KumLtUcoLJY8FGXfmyx1AdHsq/MdULsxrNatkMoY0yOYel5uNetaSG6a0XW35X+gcQfVaUzvbEYe/9t8jOs6BRBc38uu+9YFRLMvVw+jFXJ8AySsV53G9Gq5uXBv32asPXSWncdrSCtk85dGEemv7zqvjBnrjpBfWMzDA+0/xIsuIJr9dRkL3o2MayFahe7sGUzdWq4141pIXgZs/BjCh0KTzqrTmN65zDy+33iMkZ0CCPWzb+sDdAHRVHD1gN6PQcI6SPhLdRrT83J3YXzfZkQfPMvuxFTVcWxry5eQm6qvfVTSjHVHyCssUtL6AF1ANFUi7wavhroVUkl39gymjmc1b4XkZcKGj6HFEAjoojqN6aVk5fP9xmNc27EJzRt4K8mgC4imhqun0Qo5ugaOb6p4+Rqutocr4/uEsvLAGWKS0lTHsY2tMyAnRbc+KmnGuiPkFBTxsJ17XpWkC4imTuTdUMvPGCNLq9DY3iH4eLgwfVU1bIXkZxlDtjcfBIGRqtOY3rnMPGb9lcCIjk1o4V9bWQ4lBUQIUU8IsVwIEWf5WreUZToJITYKIfYKIfYIIW4u8d4sIcRRIcQuy6OTfY9Aswo3L+j9KByJhkQ9I3FFfDxcGdenGcv3nWZvcjVrhWz+ArLPw4BJqpM4hM9XHyavsIhHB7VQmkNVC2QSsFJK2QJYaXl+qWzgTillW2Ao8IEQwrfE+09LKTtZHrtsH1mzichxUKu+boVU0l29Q6jt4VK9roXkphvT1YYNhqBuqtOYXmpuMd9vOsb1nQOVXfu4SFUBGQl8a/n+W+C6SxeQUh6SUsZZvk8GzgAN7JZQsw93b+j1KBxeqa+FVEIdT1fu7h3Ksr2n2ZecrjqOdWz+3Bg4Meo51UkcwqIjBRQWSx4dpH5qX6Fi1jMhRKqU0rfE8wtSyn+dxirxfjeMQtNWSlkshJgF9ATysLRgpJR5Zaw7AZgA4O/vHzFnzpwqZc7MzMTbW221vxJmzu9UlEuPTfeR5RXE7k6vl7mcmY+hMqyVP6tAMnFNNq3qOfNYF9vOOHcpa38GLgWZ9Ng0gVTfdsS2t30BcfSfoZTcYp5Zk02vAFfuaedut/1GRUVtl1L+++KUlNImD2AFEFvKYySQesmyF8rZTmPgINDjktcE4I5RWF6sTKaIiAhZVdHR0VVe1wxMn3/jZ1K+5CPl4dVlLmL6Y6iANfNPX3FIBj+7SO46fsFq26wMq38GK18zPveTMdbdbhkc/WfouXl7ZLNJi2RiSpZd9wtsk6X8TrXZKSwp5VVSynalPBYAp4UQjQEsX8+Utg0hhA+wGJgipdxUYtsnLceVB3wD6BOnji7iLmOk3lWv6zGyKuHuPqHU83Jj2p8HVUepuqzzxoi7ba7TI+5WQmJKNj9vS6R/oIvd5vuoiKprIAuBsZbvxwILLl1ACOEG/AZ8J6X85ZL3LhYfgXH9JNamaTXbc/WAfhMhaQvEr1CdxvS83V14oH9z1sWdc9xZCzd8aHTfHTBZdRKH8PGqeIQQDG/uqjrK31QVkKnAYCFEHDDY8hwhRKQQYqZlmZuAfsBdpXTX/Z8QIgaIAfyAsk+ca46j0xjwDYZVr+lWSCWM6RFMw9ruvPvnoYundh1H5hnYMgPaj9JznVdCwrks5u5I4rZuTannYZ7b95QkkVKel1IOklK2sHxNsby+TUo53vL9D1JKV/n/XXX/7q4rpRwopWxvOSU2RkqZqeI4NCtzcTPuAzi5Gw4sUp3G9DzdnHl4YBhbElJYF3dOdZzLs/59KMyF/vq+j8qYvioOFyfBg3aa67yyzFPKNA2g/U1QvwWsegOKi1SnMb2buwYR4OvJtD8POk4rJD0Ztn4FHW8FP/VdUc0u/kwm83ee4M6ewTT0sW+vu4roAqKZi7MLRE2Gs/th72+q05ieu4szjw1qwZ6kNJbvO606TuWsexdkEfR/RnUSh/Dhyjg8XJ25r7+5Wh+gC4hmRm2uh4ZtIfpNKCpUncb0buhizAXx3vJDFBebvBWSehy2fwudx0DdENVpTG9vchq/707mrl4h+Hnb776PytIFRDMfJycY+DykHIY9P6lOY3ouzk48flULDpzKYFHMSdVxyrd6Kggn6KdnG6yMacsOUsfT1ZStD9AFRDOrltcYM9KtmQqF+arTmN61HZrQ0r82Hyw/RGFRseo4pTuzH3bPhm73Qp1A1WlMb/OR80QfPMsDA5pTx9M8XXdL0gVEMychYOAUyymPWarTmJ6Tk+DJIeEcOZfFvJ0nVMcp3crXwM0b+j6lOonpSSl5e9lB/H3cGdszRHWcMukCoplX80EQ0hfWvm3Mla2Va0gbfzoE1uHDFXHkFpisB9vxzXBwsTF8f616qtOY3sr9Z9h+7AKPDQrH081ZdZwy6QKimZcQcNUrkHUWNn6iOo3pCSGYNLQVJ1Jz+G5jguo4/09KWPGyMYVxjwdVpzG9omLJO8sOEurnxehIc5/q0wVEM7fACGgzEjZ8hGt+quo0ptcrzI/+4Q34JPowadkFquMY4pbD8Q1Gt103L9VpTG/BrhMcPJ3BU0PCcXU2969oc6fTNICBL0JBDsHHfladxCFMGtaK9NwCPl0TrzoKFBfDyleMLrtdxla4eE2XV1jEe8sP0T6gDte0a6w6ToV0AdHMzy8MIsbSJHkppBxRncb0Wjf24frOAXzzVwLJqTlqw8TOhdOxMPAFY6garVyzNx8n6UIOzwxtiZOTUB2nQrqAaI6h/7NI4WIM965V6KkhLQF4b/khdSEK843Pq1F7aHuDuhwOIiO3gI9WxdOreX36hPmpjlMpuoBojqF2IxKDRkLsr5C8U3Ua0wvw9eSuXiH8uiOJA6cUTX27/RtIPQaDXjZuDtXK9fmaw5zPymfSsFYYM1WYn/5UNYeRGHQ9eNaD5S/p4d4r4cEBzant7sJbfxyw/85zUo27zkP7Qdgg++/fwSSn5jBz3VGu69SEDoG+Fa9gErqAaA6jyKWW0ZPn6Bo4vFJ1HNPzreXGQ1FhRB88y8bDdp50at00yLkAQ94wumNr5Xpn2UEk8PRQx5obRUkBEULUE0IsF0LEWb7WLWO5ohKTSS0s8XqoEGKzZf2fLLMXajVB5D1Gj55lU/RAi5UwtlcIjet48N8/9ttvoMWUo7D5C+h0OzTuYJ99OrCYpDR+23mCcX1CCfD1VB3nsqhqgUwCVkopWwArLc9Lk1NiMqkRJV5/C3jfsv4FYJxt42qm4eIOg18zhnvf8a3qNKbn4erM01e3ZE9SGvN32WmIkxUvg5OLMRSNVi4pJa8v3kd9LzfTTRZVGaoKyEjg4v/+bzHmNa8UyzzoA4G5VVlfqwZaXwvBfSD6DeNcu1au6zoF0DHIl7eWHiArz8attuObYN986P0Y+Jj/PgbVlu87zeajKTw+OJzaHuYcMLE8QsUsZkKIVCmlb4nnF6SU/zqNJYQoBHYBhcBUKeV8IYQfsElKGWZZJgj4Q0rZrox9TQAmAPj7+0fMmTOnSpkzMzPx9vau0rpm4Oj54Z/H4J1xhIjtT5IYNJIjze9WnKxyVH4G8ReKeH1zLtc2d+XGFlU/41vuMUhJlx3P4J53js3dP6PY2Vyz54G5/h8UFkumrM9BCHi9tyfOlbzvQ8UxREVFbZdSRv7rDSmlTR7ACiC2lMdIIPWSZS+UsY0mlq/NgASgOdAAiC+xTBAQU5lMERERsqqio6OrvK4ZOHp+KUs5hvkPSvlKfSnPxSvJc7lUfwaP/LhDhj+/RCamZFV5G+Uew55fpHzJR8odP1R5+7am+jMo6Zv1R2Tws4vkin2nLms9FccAbJOl/E612SksKeVVUsp2pTwWAKeFEI0BLF/PlLGNZMvXI8BqoDNwDvAVQrhYFgsEkm11HJqJDXwBnN1g+YuqkzgE4/4CmGqLbr0FObDiFeOmwY63Wn/71UxKVj7vLT9E77D6DGzVUHWcKlN1DWQhcHFgnLHAgksXEELUFUK4W773A3oD+yzVMBoYVd76Wg1QuxH0fRIOLIKja1WnMb0mvp5M6NecRXtOsjUhxbob/+tDSDsOV/9X3zRYCe8sO0h2fhEvX9vWYW4aLI2qT3oqMFgIEQcMtjxHCBEphJhpWaY1sE0IsRujYEyVUu6zvPcs8KQQIh6oD3xl1/SaefR8COoEwdLnoNhkc2CY0P39m9HIx4NXf99nvW69F47B+veN4UpC+1pnm9VYTFIac7YeZ2yvEFr411Yd54ooKSBSyvNSykFSyhaWrymW17dJKcdbvt8gpWwvpexo+fpVifWPSCm7SSnDpJSjpZR5Ko5DMwFXTxj8KpyOgW1fq05jerXcXJg0rBUxJ9KYuz3JOhtd9pwxz/kQPU5ZRaSUvLQwlvpebjx2VQvVca6Ybmtqjq/t9dBsAKx6DTLPqk5jeiM6NiEiuC5Tlx4gNfsK55uPX2GcQuw3EeoEWCdgNfbbzhPsOJ7KM0Nb4eOA3XYvpQuI5viEgGHvQH42rHhJdRrTc3ISvDayHanZ+byz7GDVN1SYD388C/WaQc+HrRewmsrMK+S/fxygY5Avo7qYe6bBytIFRKseGoRDr4dh1/+Mm9m0crVp4sNdvUL5cctxdiVW8WbMzZ/B+XgY+pYxQoBWro9WxnE2I49XRrR1iLk+KkMXEK366Pc0+ATC4ol6nKxKeGJwCxp4uzNlfgxFl3tBPf0krHkbwodB+BDbBKxGDpxK56v1R7k5MohOQY4z2m5FdAHRqg83Lxj6pnFBfevMipev4Wp7uPLC8DbEnkjnx83HLm/lP56B4kLj31srV3Gx5Ll5Mfh4ujJpmGONtlsRXUC06qX1CGg+0BgnK+OU6jSmN7xDY/qE+fH2soOczahkZ8YDS2D/QmNo/XrNbBuwGvhxy3F2HE9lyn9aU9ereg0crguIVr0IAddMg8I8469krVxCCF4Z2ZbcgiLeWLyvwuWdC7NhyURo2AZ6PWqHhI7tTHouby09QK/m9bm+c/XrpaYLiFb91G8OA56FfQtg/yLVaUyveQNvHhgQxvxdyUQfKHVUob+FHv0fpCfDtdPB2fG7odraq4v2kVdYzBvXt3foO87LoguIVj31etQYl2nxU3rI90p4KKo5LRp68/xvMWTkFpS+UNJ2Ak4shq7jIairfQM6oOiDZ1i05ySPRIUR6uelOo5N6AKiVU/OrjDiI8g6owdbrAR3F2feGtWBk5ZTLv9SVAC/P0a+W10YpP89K5KRW8CU32IJa+jNhP7V9zqRLiBa9dWks3GD245v4eg61WlMr0vTutzTO5QfNh1n85FL5lBf/wGcjiGuxQTw8FET0IG8ueQAJ9NyeHtUB9xdnFXHsRldQLTqbcBkqBsKvz9q3KmuleupIeE0rVeLSfNiyC2wDE55KgbWvAVtb+Bcg55qAzqAtYfOMnvLce7t14wuTf81T161oguIVr251YIR0yHlCKx8RXUa06vl5sLUG9pz9FwW7/550Biu5Lf7wbMu/Odd1fFMLz23gGd/3UNYQ2+euCpcdRyb0wVEq/5C+0H3+2Hz53B4leo0ptcrzI/bujdl5vqjJC14BU7HwrUfQq16qqOZ3huL9nM6PZdpozvi4Vp9T11dpAuIVjNc9TL4hcP8hyDnguo0pjflP6252jeZRjGfkt/uFmh1jepIphd94Aw/bUvkvv7Nq9VwJeXRBUSrGVw94fovjF5ZiyeqTmN6tcjnA/fPOSt9eSnvdtVxTO9sRh5Pz91Nq0a1ebwazPNRWS4VL2J9Qoh6wE9ACJAA3CSlvHDJMlHA+yVeagXcIqWcL4SYBfQH0izv3SWl3FWVLAUFBSQlJZGbm1vucnXq1GH//v1V2YUplMzv4eFBYGAgrq417EawgC7Q/1ljmJNW10C7G1UnMq9lk/FIjWdj+0+YvS2DnruTGdGxiepUplRcLJn4y24ycgv58d4e1brX1aWUFBBgErBSSjlVCDHJ8vzZkgtIKaOBTvB3wYkH/iyxyNNSyrlXGiQpKYnatWsTEhJS7p2iGRkZ1K7tuNNPXswvpeT8+fMkJSURGhqqOpb99XkSDi2DRU9AQCTUDVadyHz2zofts6D344wYeBvfn9nIlN9iiAyu3j2KquqbDQmsOXSW165rR7iDT1F7uVSdwhoJfGv5/lvgugqWHwX8IaW0ej/M3Nxc6tevXy2HGSiNEIL69etX2OKqtpxd4MaZICXMvdvoZaT9v9TjRpfngAgYOAUXZyc+uLkTRcWSR2bvpNBa86hXE3uT03jrjwMMbuPPmO5NVcexOyGl/X8ghBCpUkrfEs8vSCnL/PNGCLEKeE9KucjyfBbQE8gDVgKTypoXXQgxAZgA4O/vHzFnzpx/vF+nTh3CwsIqzFxUVISzs+M2TS/NHx8fT1paWjlrmE9mZibe3t5W2Zbf2Q202/sWiYEjOBw2zirbrIg189uCKC6i067n8Mo6xrbID8j1bPT3e5tPFvLZ7jwGBkjubG/eY6iINT+DnELJKxtyyC2C13p7UtvNPn+Eqvg5ioqK2i6ljPzXG1JKmzyAFUBsKY+RQOoly14oZzuNgbOA6yWvCcAdowXzYmUyRUREyEvt27fvX6+VJj09vVLLmdWl+St73GYSHR1t3Q0unijlSz5S7l9k3e2Wwer5rW3Z88a/x55fSn37hfkxMvjZRXJZ7Ek7B7Mea30GxcXF8r7vtslmkxfLjYfPWWWblaXi5wjYJkv5nWqzU1hSyquklO1KeSwATgshGgNYvpY3BOhNwG9Syr9HeJNSXvwJzgO+AbrZ6jhUGD9+PPv2VTy0tnaFhrwOjTvC/AfgQoLqNGrFzoMNH0HXe6H9qFIXef4/rQnxceKpX3Zz/HzNvqv/y7VHWLr3FJOHtaJHs/qq4yij6hrIQmCs5fuxwIJylr0VmF3yhRLFR2BcP4m1QUZlZs6cSZs2bVTHqP5c3GH0LOP72bdBXqbSOMqc3gcLHoag7nB12TMMurs481AnY+7z+37YTlZezZw2eMPhc7y19ADXtG/EuD41sCNKCap6YU0FfhZCjAOOA6MBhBCRwP1SyvGW5yFAELDmkvX/J4RogHEaaxdwvzVCvfL7XvYlp5f6XlWvgbRp4sNL17Yt8/2srCxuuukmkpKSKCoq4oUXXuCzzz5j2rRpREZG4u3tzWOPPcaiRYvw9PRkwYIF+Pv7X3YOrQz1msGob+B/o+C3++Cm78GpBt0elZMKP40Bd28Y/S24lD9jXoNaTky/tTPjZm3lqZ938+ntXXByqhkdUABOpObw6OydhPp58faojjWm801ZlPxPkVKel1IOklK2sHxNsby+7WLxsDxPkFIGSCmLL1l/oJSyveWU2BgppcP+6bh06VKaNGnC7t27iY2NZejQof94Pysrix49erB792769evHjBkzFCWtxsIGGaezDiwyBg2sKYoK4ddxkHrMKB4+jSu1WlTLhjx3TWuW7j3FBysO2TikeWTkFjBu1lbyCor54o4IvN1V/f1tHvpfoITyWgq2ug+kffv2TJw4kWeffZbhw4fTt2/ff7zv5ubG8OHDAYiIiGD58uVWz6ABPR6EU7GwZio0bA1tK+pZ7uCkhD+ehvgVxjhXwZc3yu64PqEcOp3B9FXxtPCvzbXV/CbDwqJiHpm9k7gzmcy6uythDWvW/R5l0QVEsfDwcLZv386SJUuYPHkyQ4YM+cf7rq6ufzeTnZ2dKSysmeedbU4IGP4+nI+HeRPAuyEE91KdynY2fATbvoY+T0DEXZe9uhCC165rx9FzWUz8ZTf+Ph50C62+gy2+vng/qw+e5c3r29O3RQPVcUyjBp3sNafk5GRq1arFmDFjmDhxIjt27FAdqeZy9YBb54BvU5h9C5xx3KFryrX3N1j+ArS9AQZWfXZBdxdnvrgjkoC6noz7div7T5Z+/dDRfbo6nlkbEhjfJ5TbauDNguXRBUSxmJgYunXrRqdOnXjjjTeYMmWK6kg1m1d9GPMruHjADzdCWpLqRNYVtwJ+vReCesB1n11xh4F6Xm58d083vNxcGPv1FhJTqlf33h82HePtpQcZ2akJz13TWnUc09EFRLGrr76aPXv2sGvXLrZu3UpkZCSrV68mMtK46TMz8//7B4waNYpZs2YpSlqD1A02ikheBnw3EjJOikQTlAAADpRJREFUqU5kHQnr4afbjWs8t/1ktLisILBuLb4b1428wmLu+Gozp9OrxzA5C3ad4IUFsQxq1ZBpozvWqN5mlaULiKaVplF7uP0XSD8Js4ZDxmnVia5M0jb48WbwDYY7fgNP685XEe5fm6/v6srZjDxu+XITJ9NyrLp9e/sj5iRP/bybbiH1+OT2Lrg661+VpdH/KppWlqY9jJZIejJ868BFJOEv+O468PKDOxcYX20gIrgu343rztmMPG7+YhMnUh2ziPy2M4mHftxBpyBfZo6NrBEzC1aVLiCaVp7gnjBmLqSdgG+GQspR1YkuT9wK+OEG4x6Pu5ZU+l6PqooIrsv347pxISufm7/YyNFzWTbdn7XN3nKcJ3/eTffQ+nx7Tzdqe9SwOXMuky4gmlaR4F5w53xjKtyvhsDJ3aoTVc6eX4zeZH7hcPcfUCfALrvt3LQu/7u3O9n5Rdz42Qa2HzP/FMJSSt5bfojJ82Lo16IB39zdFS99o2CFdAHRtMoI6gb3/GmMn/XNNXDoz4rXUaW4GFa9AfPGG7nH/m6z01Zl6RDoy7wHeuHj4cJtMzaxNPakXfd/OfIKi3jip11MXxnHqIhAZtypT1tVli4gmlZZDcJh3HKoFwo/3gRr3jF+WZtJXib8eg+sfRs6jYE75lv9gnllhfh58esDvWjTxIf7f9jB20sPUFhkrn+v5NQcbv1yE/N3JfP01S15Z1QH3Fz0r8XK0v9SDm7btm08+uijqmPUHD6NjZZIh5sg+nVjIMLsFNWpDCf3wJf9jSlpB78KIz+ucHBEW6vv7c7se3twa7cgPl19mDu+2sLZjFLnfrO76ANnuGb6Og6eyuCT27rwUFRYjR8c8XLpAuLgIiMjmT59uuoYNYtbLbj+i/9r796Dq6quOI5/Fzfx3pDECAQCJSAgSC3lEYukPIoItlKptTCUttYQS0cLUyraqdZWpwVHax2Yap1aH0V8VGwqKsqr0ioJWAVMQQQhCCEViFBIgzxigZhk9Y9zbCMGknvy2DlkfWYyk3vu4ea3yWPdvfc5e8P4e2HnSvj9cNjpcI2ymhpY9xDMHweVH3pDViNnecuztAKxxAj3TBrE3MmD2LjnA664fw3LNu/7eHO4FvfhySpmL9nK954opFtaEstu/BITBjXvxQVnK5slqu0vt8G/ttT5VFJ1lbefdry6DoSv/vqMpzz11FPMmzcPEWHQoEHcddddTJs2jbKyMjp37szjjz9Oz549WbRoEXPmzCESiZCWlsaaNWsoKChg3rx5LFu2jNmzZ7Nnzx5KSkrYs2cPN910k/VOmosIfHG6d5XW4unecvBZ18Llc1p2vuHANlg6C0rfhH5XeHeXJ7fODY6+ObQHg3ucxy2L3mbmM2+xbMB+Zn99AF3TmuaGxobYUlbFHfevofSD4+QOP5+fXXmRzXc0ghUQx7Zu3crdd9/N66+/Tnp6OocOHSI3N5epU6eSm5vLggULuPHGG3nxxRe58847WblyJd27d+fw4cN1vt727dvJz8/n2LFj9O/fnxkzZpCYaJciNptug+GGAsi/G974HRQthTE/h6HTmnf4qKIMXpsHhfMhlub1iAZ9q9X0Ok7nwoxUnp8xgj+89k/ue2UHq+eVcf3oPvxgdJ9mveppx4Fj3LOiiPx3T9InPZlF04dzSa+zd/HHlmIFpLYz9BSON9Ny7qtWrWLy5Mmkp3vvWjt27MjatWt54YUXAMjJyeHWW28FYOTIkVx33XVMmTKFSZMm1fl6EyZMIBqNEo1G6dKlCwcOHCAzM7PJc5taEqLenMPga+Dl2+Dln3qr3Y6cBRfnQGJS032to/vgzT/A+keg6oT3+mN/0Wp7HXVJiLRjxpgLmDCwG/e+vJ0HXt3J0+t2kzu8F1OHn0+H5KYrvJtLD/PomhJWbNlPcjSBKf0TufPaL1mvo4k4KSAi8k1gNnARMExV/3Ga88YDvwUiwHxV/bV/vDeQB3QENgI5qlrZAtGbnKrWO3H38fMPP/ww69evZ/ny5QwZMoRNmzZ96txoNPq/z2359xbW5bPeMiHFr8Kaud5+GwW/goFTYMg13h4cQVRVQkk+bP4zbHsJaqq9/UouuwPS+zZtG1pQz07tefC7FzNt9wc8mF/Mfa/s4KHVxVwxoCsTs7ozqm86CQGWECmvOMmKLftZ/Nb7bNxzmNRoAteP7sP00RfwduEbVjyakKseyDvAJOCR050gIhHgQeDLQClQKCJLVHUbcC9wn6rmicjDwPeBh5o/dtMbN24cEydO5Oabb6ZTp04cOnSIESNGkJeXR05ODgsXLmTUqFEA7Nq1i+zsbLKzs1m6dCl79+51nN58igj0u9zb5XD3696eGxuegDcf4YvRTnD0Su/GxIwBkN7/0wsaqsJ/yr073ksLYe862FUAJ494Q1XZ02HY9dChl4PGNY8vnN+BBdddwo4Dx3jijfdYvnk/L23aR0o0gezeHcnu05ELM1K5oHMKnVOjRBPaISKoKhUnq9h76Dgl/65gS+kR1paU8877R6hR6J+Ryh0TLuJbl/SwO8qbiZMCoqpFQH3vvIcBxapa4p+bB1wtIkXAWOAa/7wn8XozoSwgAwYM4Pbbb+fSSy8lEomQlZXFAw88wLRp05g7d+7/JtEBbrnlFnbu3ImqMm7cOAYPHszq1aduF29aBRHoNcr7OP4BFC3l6No/Edu2BN764//POycV2ncAaef1NE4ehcpaOzSn9YSLroLPXQ19xji/LLc5XZiRyq8mDuSXV32OgnfLWL2jjLW7ynl1+8FPnJcYERIj7Tj+UfUnOnWJESGrRwdmju3HlQO78tmu57ZwC9oecXUpHYCIFAA/qWsIS0QmA+M/3iNdRHKAbLxisU5V+/rHewB/UdXPn+Zr3ADcAJCRkfGFvLy8TzyflpZG3771DwNUV1cTiYS363tq/uLiYo4cOeIwUfwqKipISUlxHSOwiooKUpKTSDq+n5SK3bT/z/skfnSUxI+8jZhq2iVQHWnPiVgXjidlcCy1L5XR1jW34eJ7cLRS2V9Rw/4Pa6ioVI5XQVWNEk0QYgmQntSOru2FrsntOCdy5uHgsP8MgZs2XHbZZRtUdeipx5utByIirwBd63jqdlV9qSEvUccxPcPxOqnqo8CjAEOHDtUxY8Z84vmioqIGTY43157oLeXU/LFYjKysLIeJ4ldQUMCp378wCXt+CH8bwp4fWlcbmq2AqOrljXyJUqBHrceZwD7g38B5IpKgqlW1jhtjjGlBrflO9EKgn4j0FpFzgG8DS9Qbc8sHJvvn5QIN6dGclsthPBfaWnuNMc3DSQERkYkiUgoMB5aLyEr/+GdEZAWA37uYCawEioBnVXWr/xI/BX4sIsVAJ+CxoFlisRjl5eVt5o+qqlJeXk4s1nJ3/xpjzk6ursJaDCyu4/g+4Mpaj1cAK+o4rwTvKq1Gy8zMpLS0lLKysjOed+LEiVD/0a2dPxaL2c2FxphGa/N3oicmJtK7d+96zysoKAjdpHNtYc9vjGl9WvMciDHGmFbMCogxxphArIAYY4wJxOmd6C1NRMqA3QH/eTrePShhFfb8EP42hD0/hL8NYc8Pbtpwvqp2PvVgmyogjSEi/6jrVv6wCHt+CH8bwp4fwt+GsOeH1tUGG8IyxhgTiBUQY4wxgVgBabhHXQdopLDnh/C3Iez5IfxtCHt+aEVtsDkQY4wxgVgPxBhjTCBWQIwxxgRiBaQBRGS8iLwrIsUicpvrPPEQkQUiclBE3nGdJQgR6SEi+SJSJCJbRWSW60zxEpGYiLwpIm/7bZjjOlMQIhIRkbdEZJnrLEGIyHsiskVENonIp3ZBbe1E5DwReU5Etvu/D8OdZ7I5kDMTkQiwA/gy3iZXhcB3VHWb02ANJCKjgQrgqdNt+9uaiUg3oJuqbhSRVGAD8I2w/P8DiIgAyapaISKJwN+BWaq6znG0uIjIj4GhwLmq+jXXeeIlIu8BQ1U1lDcSisiTwGuqOt/fI6m9qh52mcl6IPUbBhSraomqVgJ5wNWOMzWYqq4BDrnOEZSq7lfVjf7nx/D2hunuNlV81FPhP0z0P0L1zk1EMoEJwHzXWdoiETkXGI2/95GqVrouHmAFpCG6A3trPS4lZH/AzhYi0gvIAta7TRI/f/hnE3AQ+Juqhq0N9wO3AjWugzSCAn8VkQ0icoPrMHHqA5QBj/vDiPNFJNl1KCsg9ZM6joXq3ePZQERSgOeBm1T1qOs88VLValUdAmQCw0QkNMOJIvI14KCqbnCdpZFGqurFwFeBH/rDu2GRAFwMPKSqWcCHgPP5WCsg9SsFetR6nAnsc5SlTfLnDZ4HFqrqC67zNIY/7FAAjHccJR4jga/7cwh5wFgRedptpPj5O56iqgfxdkRtkl1NW0gpUFqr5/ocXkFxygpI/QqBfiLS25+4+jawxHGmNsOfgH4MKFLV37jOE4SIdBaR8/zPk4DLge1uUzWcqv5MVTNVtRfez/8qVb3Wcay4iEiyfxEG/tDPV4DQXJmoqv8C9opIf//QOMD5hSRtfkvb+qhqlYjMBFYCEWCBqm51HKvBRORPwBggXURKgV+q6mNuU8VlJJADbPHnEAB+rqorHGaKVzfgSf+KvnbAs6oaykthQywDWOy9HyEBeEZVX3YbKW4/Ahb6b2RLgO85zmOX8RpjjAnGhrCMMcYEYgXEGGNMIFZAjDHGBGIFxBhjTCBWQIwxxgRiBcQYY0wgVkCMMcYEYgXEGIdE5BIR2ezvGZLs7xcSmnWyTNtmNxIa45iI3AXEgCS89Y7ucRzJmAaxAmKMY/7SFIXACWCEqlY7jmRMg9gQljHudQRSgFS8nogxoWA9EGMcE5EleMuk98bbvnem40jGNIitxmuMQyIyFahS1Wf81XrfEJGxqrrKdTZj6mM9EGOMMYHYHIgxxphArIAYY4wJxAqIMcaYQKyAGGOMCcQKiDHGmECsgBhjjAnECogxxphA/gviJqIR9yy13QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Berechnung von Sinus und dessen Ableitung\n", "wertebereich = np.linspace(0, 2* np.pi, 1000)\n", "sin = np.sin(wertebereich)\n", "cos = (sin[1:]-sin[:-1]) * 1000/2/np.pi\n", "\n", "# Plotten der Daten\n", "plt.plot(wertebereich, sin, label='sin')\n", "plt.plot(wertebereich[1:], cos, label='cosin')\n", "plt.grid()\n", "plt.xlabel('x')\n", "plt.ylabel('f(x)')\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Aufgabenteil B\n", "\n", "### Aufgabenstellung\n", "\n", "In diesem Aufgabenteil sollen Sie ein bisschen mit boolschen Arrays spielen. Ziel ist es, ein Array zu finden, dass elementweise die Maximas zwischen den beiden zuvor erstellten Arrays enthällt.\n", "1. Sie werden wie bei Aufgabenteil A vermutlich auch, auf das Problem stoßen, dass das Sinusarray ein Element mehr als das Cosinusarray enthällt. Ignorieren Sie einfach das erste oder letzte Element. Dies ist mathematisch nicht ganz korrekt, aber für unsere Näherung hier ausreichend.\n", "1. Erstellen Sie ein boolsches Array, das `True` ist, wenn der Cosinuswert kleiner als der korrespondierende Sinuswert ist und sonst `False`.\n", "1. Benutzen Sie das boolsche Array, um ein Array zu erstellen, bei dem jedes Element das Maximum der beiden korrespondierenden Elemente der anderen Arrays enthällt.\n", "1. Plotten Sie das Maximumsarray." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lösungshinweis\n", "\n", "Ihr Plot könnte wie folgt aussehen:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "tags": [ "remove_input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3hUZdrH8e+d3gMkIUACSYBQpJPQBSkWbGBHRJoF14ruu/qKu65ld91d3111XddVF5UigooFVBQRiEgn9E5CSEgIECCUBEid5/0jIxtjAslkkjOT3J/rmmtmTpn5HSbMPeec5zyPGGNQSimlasrD6gBKKaXckxYQpZRSDtECopRSyiFaQJRSSjlEC4hSSimHeFkdoD6Fh4eb2NhYh9Y9e/YsgYGBzg1Uj9w9P7j/Nrh7fnD/bXD3/GDNNmzcuPG4MSai4vRGVUBiY2NJTk52aN2kpCSGDh3q3ED1yN3zg/tvg7vnB/ffBnfPD9Zsg4hkVDZdD2EppZRyiBYQpZRSDtECopRSyiFaQJRSSjlEC4hSSimHWFpAROQ9EckRkR1VzBcReV1EUkVkm4j0Ljdvooik2G8T6y+1UkopsH4PZAYw8iLzrwXi7bcpwL8BRKQZ8BzQD+gLPCciTes0qVJKqZ+x9DoQY8wKEYm9yCKjgVmmrM/5tSLSRERaAkOBJcaYXAARWUJZIZpbFzk/25TFyv1FZPikEx7kS/vmQcSGB+Dr5VkXb+d2jDEcPVPIoVPnOHK6kILiUgCC/LyIDPEjplkATQN9LE6pVONgjOFYXiEpOfkczD3HmfPF5BWUcN/gOJoEOPf/oatfSBgFZJZ7nmWfVtX0XxCRKZTtvRAZGUlSUlKNQ8zcWMDWY6V8lrLzwjQvD+jQ1IOu4Z70a+FFmL/VO3MXl5+f79C2V+V0oWFzTglbj5Wy/5SNM0UXH1cmwl9o39SDXhFedIvwxN9Lavyezt6G+ubu+cH9t8Hd80Pl21BiM2w9VsqWnFJ2niglt+Dn/x8FaFl8iKgg535PuXoBqexbxlxk+i8nGvMO8A5AYmKiceQKzqFD4ftly+nVdyBHzhSQmpPPtqzTrEo9zsd78/hkXzED24Vxz6A4hndqjkjNvxzrmjOuXrXZDCtTjzNrTTpL9+RgDLRu5s+VXZvRs3UT2jQLoEWoH/7eZXtmeQUlHDldQOqxfLZlnWJtWi5rsgvx9fJgVI9WTBgQS7fo0HrdBiu5e35w/21w9/zw8204crqAd1emMX9jFifPFRPi58Wg9pH0jWtGx8hgYsIDCfX3JtDHs06+l1y9gGQBrcs9jway7dOHVpieVJdBvDyEsCBfwoJ86dIqlNE9y3Z4MnPP8dmmQ3ycnMm9M5Pp1CKYp0Z2ZHinyLqMU6+MMaxIOc7L3+5hZ/YZwoN8eGhoO27o3opOLYIv+ofZNSqUKyn7tyi1GTZmnOTzzYdYsOUQn2zMYmjHCH5zdUe6RlW/kCjV2OWcKeAfS1P4JDmLUmMY2aUFtyVEMzg+HC/P+jsa4uoFZCHwiIjMo+yE+WljzGERWQy8VO7E+dXANCsCtm4WwNQr43loWDsWbsnmjeWp3DMjmeGdmvPsDZcRF+7eHbcdOH6W336+ndX7TxDd1J+/3d6DG3u0dOj8j6eH0DeuGX3jmjHtuk7MWXuQt1fs54Z/ruSOxGieua6z04/RKtWQlJTa+C69mEeX/0BBSSm3J7bmwSva0bpZgCV5LC0gIjKXsj2JcBHJoqxllTeAMeYtYBFwHZAKnAMm2+flisgfgA32l3rxpxPqVvH29ODWhGhu7NGKmavT+cfSFEa+toJnruvMhAExLnlY62JKSm1MX3mAV5fsw8fLg+dvvIy7+sXg4+WcXzchft48OLQd4/q34V/LU5n+4wGW7s7h+VFduLFHK6e8h1INyf5j+Uydt5kdh4oY0iGCF0Z1sfwHqtWtsMZeYr4BHq5i3nvAe3WRqzZ8vDy4f0hbRvdsxVOfbuO5hTtZuieHV+7oQXiQr9XxqiXnTAGPzt3MugO5XNMlkj+M7krzEL86ea8QP2+mXduZm3pGMe2z7Tw6dzMrU47z/Kgu+PtoKzeljDF8tCGTF77chZ+3Bw/39OU3Y/q4xI9S12465Maah/jx/qQ+/GF0F9alnWD0G6vYcei01bEuaW3aCa57fSXbsk7zyh09eOvuhDorHuV1bhnC/F8N4JFh7fl4Yyaj3lhJ+vGzdf6+SrmyohIb0z7bztOfbad3TBO+fXwIfVp4uUTxAC0gdUpEGD8glk8fHIjNGG57azWLth+2OlaVPknO5O7p6wj192LBI4O4pXd0vf6henl68JtrOjLrnr4czy/k5jdXsSHd0iOTSlkm92wRd7+7jnkbMnl0eHtm39OPyHr4MVcTWkDqQdeoUBY+cjldWoXy8Ieb+GBtpWOzWMYYwz++T+HJ+dvo3zaMzx8eRIfIYMvyDI6P4POHBtE0wIdx/1nHwq3ZlmVRygrZp85z279XsyXzFP+4syf/c3VHPDxcY6+jPC0g9SQi2Jc59/VjeMfm/O6LHfxreSplp3isZYzhxa928er3+7i1dzTvTepDiJ+31bGIDQ/ks4cG0rNNE6bO28zHGzIvvZJSDUDGibPc/tYajuUVMue+fhcuGXBFWkDqkZ+3J2+NT+DmXlH83+K9/HNZqqV5jDG88OUu3l+Vzj2D4vjb7d2d1srKGZoE+DBzcl8ubx/OU59uY+nBYqsjKVWnUnPyuf2tNZwrKuHD+/vTJ7aZ1ZEuynW+LRoJb08P/n57D27tHc0rS/Yx/cc0S3IYY3h+4U5mrE7n/sFxPHtDZ5c5MVeev48n0ycmcmXn5szeVaR7IqrByjp5jvHvrsNmDPOmDKhRLw1W0QJiAQ8P4a+3duP6bi3549e7LTkn8ur3Kcxck8GUIW155jrXLB4/8fXy5M1xCXQN8+Tpz7bx7Q7XbYiglCOO5RUy/t31nC0sYdY9/ejYwrpzkDWhBcQiXp4evDqmJyM6NefZBTtYvPNIvb33B2szeH1pCmMSWzPt2k4uXTx+4uPlwaO9fOnRugmPzd3CqtTjVkdSyinyCoqZ+N56jpwu4P3JfbisVYjVkapNC4iFfLw8eOOu3nSPbsLj87awLetUnb/n4p1H+P2CHQzv1Jw/3dzVLYrHT3y9hPcn9SEuPJBfzd5Iak6e1ZGUqpVSm+GxuZvZezSPt8YnkBDj2uc8KtICYjF/H0+mT0ikWaAP985M5tCp83X2Xruyz/D4vC10i27CG3f1qtdO15ylSYAP70/ug6+3J/fMSObk2SKrIynlsD99vZvle4/x4uguXNEhwuo4NeZ+3yANUESwLzMm96GguJT7ZiZfGJDJmfKKDFNmJxPi78V/xicQ4OPq/WhWrVUTf96ZkMCRMwX86oONFJXYrI6kVI19uO4g7606wORBsYzrF2N1HIdoAXER8ZHBvD62F3uOnOF3X+xw6jUiJaU23txSQE5eIW+PT6yXrknqWu82TXn51u6sO5DLH77aZXUcpWpk88GTPLdwB1d0iOC313W2Oo7DtIC4kGEdm/Po8Hjmb8xi7nrnNVf98zd72J1r46Wbu9GzdROnva7VbuoVxf2D45i9NkOvVldu4+TZIh6es4nIED9ev9M9DyX/xH2TN1BTR8QzpEMEzy/cydbM2p9U/27nEd5deYAr23hxW0K0ExK6lqdGdiIhpinTPt3G/mP5VsdR6qJsNsMTH2/heH4Rb47rTWiA9b0+1IYWEBfj6SH8Y0xPIoJ9efjDTeQVOH71dfap8zw5fxtdo0IY06lhDtTk7enBG3f1wsfLg4fnbOJ8kfPPHynlLP/+YT9Je4/x7I2X0T3a/Y8GaAFxQU0DfXh9bE+yT53nuYU7HXqNklIbj8/bQkmpjX+O7Y23C3bE5iwtQ/15dUxP9h7N48WvHPv3UqqubT54kleW7OPGHq24u18bq+M4hRYQF5UQ04xHh8fz2aZDDh3ff31ZKuvTc/njzV0tH7WsPgzt2JwpQ9oyd30m3+86anUcpX7mXFEJT3y0hRYhfm53/dXFaAFxYY8Ob0+vNk347efba3R9yJbMU7yxLIVbekdxc6+Gd96jKr++qgOdWgTz9GfbOJFfaHUcpS7409e7ycg9x9/v6OESvV07ixYQF+bl6cFrY3pisxn+5+Mt2GyXbtpbUFzKbz7ZSmSIH8+P6lIPKV2Hr5cnr93ZkzPnS5j22XaX6C5fqeV7cpiz7iBTBrelf9swq+M4lRYQFxcTFsizN1zG2rRc5m44eMnlX/1+H6k5+fz11u4N6pdOdXVqEcJvrunAd7uOMn9jltVxVCN36lwRT326jU4tgvn11R2sjuN0lhYQERkpIntFJFVEnq5k/qsissV+2ycip8rNKy03b2H9Jq9fY/q0ZlD7MP68aA/ZFzmUtTHjJP9ZkcbYvm0Y4obdIjjLvZe3pW9sM/7w1S5y8gqsjqMasT99vZvcs0X8/Y4e+Hp5Wh3H6SwrICLiCfwLuBa4DBgrIpeVX8YY84QxpqcxpifwT+CzcrPP/zTPGDOq3oJbQET4883dKbUZfvt55YdmCopLefKTrbQM9ee317vvla3O4Okh/PnWbhSU2HhhoV6lrqyxMuU4n2zM4oEhbenSyvXH9nCElXsgfYFUY0yaMaYImAeMvsjyY4G59ZLMBbUJC+A313Rk+d5jLNjyy1ZZbyxLJe34WV6+rTtBvu7bz5WztIsI4rHh7fl6+2G+q8eu8pUCOF9UyjOfbycuPJDHRsRbHafOiFUnGkXkNmCkMeY++/PxQD9jzCOVLBsDrAWijTGl9mklwBagBPiLMeaLKt5nCjAFIDIyMmHevHkO5c3PzycoKMihdZ3FZgwvrSvg8Fkbfx4cQIhPWVPA7Hwbz646T/+WXtzf3bfSdV0hf23VdBtKbIbnV5/nbDG8NNgffy9rm042xs/A1dRX/nl7ivg2vZin+/rRqZlzD11Z8RkMGzZsozEm8RczjDGW3IDbgenlno8H/lnFsv9bcR7Qyn7fFkgH2l3qPRMSEoyjli9f7vC6zrTvyBnTbtrX5jcfbzHGGGOz2cztb6023Z9fbI7nFVS5nqvkrw1HtmHzwZMm9umvzO8+3+78QDXUWD8DV1If+bdnnTJxT39lnv50a528vhWfAZBsKvlOtfIQVhbQutzzaKCqK+bupMLhK2NMtv0+DUgCejk/ouuJjwzmvsFt+WRjFhvSc5m/MYv1B3KZdm0nwoIq3/tozHq2bsKkgbHMXpvBFif0LabUxdhshmcX7KBZoA9PX9vwz0VaWUA2APEiEiciPpQViV+0phKRjkBTYE25aU1FxNf+OBwYBDSas6WPjWhPq1A/HvlwEy9+tYvEmKbckdj60is2Ur++qgMRwb48t2BHta6lUcpRn20+xOaDp3j62s6E+jf8ZvSWFRBjTAnwCLAY2A18bIzZKSIvikj5VlVjgXn23aifdAaSRWQrsJyycyCNpoAE+Hjx3KguHD1TSF5BCX+8uSseDbivq9oK9vNm2rWd2Jp1mk82Oq+bfKXKO1NQzF++2U3vNk24pVeU1XHqhaXNdYwxi4BFFab9vsLz5ytZbzXQrU7DubirL4tk6oh42kYE0qlFiNVxXN7NvaL4cN1BXv52LyO7tHT7brSV63ltSQonzhYxY3LfRvODTq9Ed1MiwhNXdWB0z8bxS6e2RIQXRnfh5LkiXv1+n9VxVAOz90geM9ekc1ffNnSNapjXfFRGC4hqNLq0CmVcvxhmrUln9+EzVsdRDYQxhucW7iDYz4vfXN3R6jj1SguIalT+5+oOhPh789Ki3VZHUQ3Ekl1HWZuWy/9c3ZGmgQ1z4LaqaAFRjUqTAB8eHR7PjynH+WHfMavjKDdXXGrjL9/soV1EIGP7NL6WkFpAVKMzvn8MMWEBvPT1bkq1Wa+qhXnrD5J2/CzTru2Ml2fj+zptfFusGj0fLw+eHtmJvUfz+CRZm/Uqx+QVFPPa9yn0i2vGiM7NrY5jCS0gqlEa2bUFCTFN+fuSfZwtLLE6jnJDb/2wnxNni/jt9Z0bzBC1NaUFRDVKIsJvr+/MsbxC3lmRZnUc5WYOnz7P9B8PMLpnK7pHN7E6jmW0gKhGq3ebplzfvSXvrEjTgadUjfz9u30YQ6NrtluRFhDVqD15dUeKSm28uXy/1VGUm0g5msenm7KYODCG1s0CrI5jKS0gqlGLDQ/k9oRoPlx3kEMXGS5YqZ+8+v0+An28eGhoe6ujWE4LiGr0HrWPGPf69ykWJ1Gubseh0yzafoR7Lo9rdBcNVkYLiGr0opr4M65/G+ZvyiLtWL7VcZQLe3XJPkL9vbn38jiro7gELSBKAQ8NbY+Ppwev6l6IqsKmgydZuieHKUPaNoqxPqpDC4hSQESwL5MHxfLl1mx2ZWtHi+qXXvluH+FBPkwaGGt1FJehBUQpuweGtCPYz4tXluy1OopyMWv2n2Bl6nEeHNqeQF9Lh1FyKVpAlLILDfBmyuC2fL87h+1Zp62Oo1yEMYa/f7eXFiF+jOvXxuo4LkULiFLlTBoUS4ifF68v03MhqsyPKcdJzjjJw8Pb4+ftaXUcl6IFRKlygv28uffytizZdZSd2boXouCNZam0DPXjjsRoq6O4HC0gSlUwaVAswb5evLEs1eooymJr006wPj2XX13RDl8v3fuoyNICIiIjRWSviKSKyNOVzJ8kIsdEZIv9dl+5eRNFJMV+m1i/yVVDFurvzeRBsXyz4wh7j+RZHUdZ6I1lqYQH+TKmEQ4WVR2WFRAR8QT+BVwLXAaMFZHLKln0I2NMT/ttun3dZsBzQD+gL/CciDStp+iqEbjn8jgCfTz5p54LabQ2HTzJytTjPDCkrZ77qIKVeyB9gVRjTJoxpgiYB4yu5rrXAEuMMbnGmJPAEmBkHeVUjVCTAB8mDozl6+2HSc3RvZDG6I1lqTQN8OYubXlVJSsbNEcB5YeDy6Jsj6KiW0VkCLAPeMIYk1nFulGVvYmITAGmAERGRpKUlORQ2Pz8fIfXdQXunh/qfxs6exh8PODZuat4oIdfrV9PPwPrVTd/+ulSlu0p4NZ4bzasWVn3wWrAlT4DKwtIZUN4VRyg+ktgrjGmUER+BcwEhldz3bKJxrwDvAOQmJhohg4d6lDYpKQkHF3XFbh7frBmG3aU7OY/P6bx0rg+xIUH1uq19DOwXnXz/2r2RkL8jvPcuGGE+LlWtyWu9BlYeQgrCyh/ZioayC6/gDHmhDGm0P70P0BCdddVyhnuG9wWL08P3lmh44U0FnuP5PHtziNMGhTncsXD1VhZQDYA8SISJyI+wJ3AwvILiEjLck9HAbvtjxcDV4tIU/vJ86vt05RyqohgX+5IjObTjYfIOaOjFjYG/1qeSqCPJ/cMirU6isuzrIAYY0qARyj74t8NfGyM2SkiL4rIKPtij4nIThHZCjwGTLKvmwv8gbIitAF40T5NKaebMrgdJTYb7646YHUUVccyc8/x1bZs7u4fQ5MAHe/jUiztFcwYswhYVGHa78s9ngZMq2Ld94D36jSgUkCbsACu796KOWsP8tDQ9tqVdwM2/cc0PD2Ee3S8j2rRK9GVqoYHhrQlv7CED9ZmWB1F1ZHcs0V8lJzJzb2iiAypfau7xkALiFLV0DUqlMHx4by/Kp2C4lKr46g6MHN1OgXFNqYMaWt1FLehBUSpanpwaDuO5xcyf2OW1VGUk50rKmHWmnSu7BxJ++bBVsdxG1pAlKqmAW3D6BEdyjsr0igptVkdRznRJ8lZnDxXzK+u0L2PmtAColQ1iQgPDm3HwdxzfLPjiNVxlJOUlNr4z49pJMQ0JTG2mdVx3IoWEKVq4KrLWtA2PJC3ftiPMZV2fqDczKIdR8g6eZ4H9NxHjWkBUaoGPD2EKUPasjP7DKtST1gdR9WSMYa3f9hPu4hAruwcaXUct6MFRKkauqlXFOFBPkxfmWZ1FFVLq1JPsDP7DA8MaYeHR2Vd7KmL0QKiVA35eXsyvn8sSXuPkXJUu3p3Z2+v2E/zYF9G92pldRS3pAVEKQfc3b8Nvl4evKfdm7it3YfP8GPKcSYNitXhah2kBUQpB4QF+XJL72g+3XSIE/mFl15BuZz3Vh7A39uTcX1jrI7itrSAKOWgey+PpajExmzt3sTtHMsrZMGWbG5LiCY0QPs2c5QWEKUc1L55MMM6RjB7TYZ2b+JmPlibQVGpjcnaZXutaAFRqhbuG9yWE2eLWLDlkNVRVDUVFJcyZ10Gwzs1p21EkNVx3JoWEKVqYWC7MDq3DGH6jwf0wkI3sXBrNsfzi7hXu2yvNS0gStWCiHDf5XGk5OSzIuW41XHUJRhjeG/lATq1CGZguzCr47g9LSBK1dKNPVrRPNiX6T/qhYWubneujT1H8rhnUBwieuFgbWkBUaqWfLw8mDgwlh9TjrPnyBmr46iLWJxeTHiQD6N66oWDzqAFRCknGNevDf7enrz7o15Y6KrSjuWz9Vgp4/rF4OetFw46gxYQpZygSYAPt/SOYsHWbHLPFlkdR1Xi/VXpeAnc3V8vHHQWSwuIiIwUkb0ikioiT1cy/9cisktEtonIUhGJKTevVES22G8L6ze5Ur80aWDZhYVz1x+0Ooqq4NS5IuZvzKJ/Ky8ign2tjtNgWFZARMQT+BdwLXAZMFZELquw2GYg0RjTHZgPvFxu3nljTE/7bVS9hFbqIuIjg7m8fTiz12RQrCMWupR5GzI5X1zK1TFeVkdpUKzcA+kLpBpj0owxRcA8YHT5BYwxy40x5+xP1wLR9ZxRqRqZNDCWI2cKWLxTRyx0FcWlNmauTmdguzDahOi5D2eyshxHAZnlnmcB/S6y/L3AN+We+4lIMlAC/MUY80VlK4nIFGAKQGRkJElJSQ6Fzc/Pd3hdV+Du+cE9tsHDGCL8hX8s2kpQ7r6fzXOH/Jfijtuw7nAJh08Xckc7Q35+gdvlr8ilPgNjjCU34HZgernn44F/VrHs3ZTtgfiWm9bKft8WSAfaXeo9ExISjKOWL1/u8LquwN3zG+M+2/CfFftNzP9+ZbZlnvrZdHfJfzHuuA23vrnKDP7rMlNaanPL/BVZsQ1AsqnkO9XKQ1hZQOtyz6OB7IoLiciVwG+BUcaYC/1mG2Oy7fdpQBLQqy7DKlVdtye2JsDHkxmr062O0ujtOHSa5IyTTBgQoyMO1gErC8gGIF5E4kTEB7gT+FlrKhHpBbxNWfHIKTe9qYj42h+HA4OAXfWWXKmLCPX35raEaL7cms1xHSvEUrPXZODv7cntCa0vvbCqMcsKiDGmBHgEWAzsBj42xuwUkRdF5KdWVf8HBAGfVGiu2xlIFpGtwHLKzoFoAVEuY8KAWIpKbcxdp016rXLqXBFfbDnETb2idMyPOmJpmzZjzCJgUYVpvy/3+Moq1lsNdKvbdEo5rn3zIIZ0iGD22gx+NbQd3p56zW59+zg5k8ISGxMG6IWDdUX/qpWqI5MHxpKTV8g3O7RJb30rtRlmr82gb1wzOrcMsTpOg1WtAiIizUXkZhF5WETuEZG+IqLFR6mLuKJDBLFhAcxYpf1j1bekvTlk5p5n4oBYq6M0aBctAiIyTEQWA19TdsV4S8quGv8dsF1EXhARLe9KVcLDQ5g4MJZNB0+xNfOU1XEalZlrMmgR4sfVXSKtjtKgXeocyHXA/caYX5wJFBEv4AbgKuDTOsimlNu7LSGavy3ey8zV6YzS77J6sf9YPiv2HeN/ruqg557q2EX/dY0xT1ZWPOzzSowxXxhjtHgoVYVgP29uT2zNl9uyOVWo/WPVh9lrMvD2FO7s28bqKA1edc+BzBaR0HLPY0Vkad3FUqrhmDAghuJSww+ZJVZHafDyC0v4dGMW13drqb3u1oPq7t+tBNaJyHUicj/wHfBa3cVSquFoGxHEFR0iWJ5ZQlGJ7oXUpc83HyKvsIQJA2OtjtIoVKuAGGPeBu4DFgAvAkOMMV/WZTClGpJJA2M5VWj4VnvprTPGGGatTqdbVCi9WjexOk6jUN1DWOOB94AJwAxgkYj0qMNcSjUoV3SIIDJAmKn9Y9WZNWknSMnJZ8KAGES036v6UN1DWLcClxtj5hpjpgG/oqyQKKWqwcNDGN7Gm40ZJ9lx6LTVcRqkWaszaBrgzY09WlkdpdGo7iGsm8p3ZmiMWc/Fx+5QSlUwOMpLe+mtI4dOnee7XUe4s28b/Lx10Kj6cqkLCX8nIs0qm2eMKRKR4SJyQ91EU6phCfAWbukdxcKt2ZzQXnqdas7aDADG9dOmu/XpUnsg24EvRWSpiPyfiDwlIr+3N+vdDtwIrKv7mEo1DBMHxFJUYmPehsxLL6yqpaC4lHkbMrmycyTRTQOsjtOoXKqA3GaMGURZl+s7AU/gDPAB0NcY84Qx5lgdZ1SqwYiPDGZQ+zDmrM2gpFSb9DrD19sOk3u2iInadLfeXaqAJIhIDDCOssGe3gZmUTYYlH8dZ1OqQZo4IJbs0wUs2XXU6igNwqw16bSLCGRguzCrozQ6lyogbwHfAp2A5HK3jfZ7pVQNjegcSXRTfz2Z7gRbMk+xNes0EwfGatNdC1yqL6zXjTGdgfeMMW3L3eKMMW3rKaNSDYqnhzC+fwzrDuSy+/AZq+O4tVmr0wny9eKW3tFWR2mUqtuM98G6DqJUYzKmT2v8vD2YtSbd6ihu63h+IV9tO8xtCdEE+Vo6uGqjpX0dK2WBJgE+3NQzis83H+LUuSKr47iljzZkUlRq4+7+OmStVbSAKGWRiQNjKSi28XGyNumtqZJSGx+szWBwfDjtmwdZHafRsrSAiMhIEdkrIqki8nQl831F5CP7/HUiEltu3jT79L0ick195lbKGTq3DKFvXDNmrcmg1GasjuNWluw6yuHTBUzQIWstZVkBERFP4F+UDZV7GTBWRC6rsNi9wEljTHvgVeCv9nUvA+4EugAjgTftr6eUW5k0MJask+dZtifn0gurC2auSSeqiT/DOzW3OkqjZuUeSF8g1RiTZowpAuYBoyssMxqYaX88HxghZW31RgPzjDGFxpgDQKr99ZRyK1dfFknLUD/tpbcG9h7JY21aLuMHxODpoU13rWRl04UooI2h44YAABrZSURBVPzB3yx+2UHjhWWMMSUichoIs09fW2HdqMreRESmAFMAIiMjSUpKcihsfn6+w+u6AnfPD+6/DVXlH9i8lE9TjvPhV8toFeTapyVd4TOYubMQbw+ILjxIUlLNzh+5Qv7acqVtsLKAVPbToeKB4KqWqc66ZRONeQd4ByAxMdEMHTq0BhH/KykpCUfXdQXunh/cfxuqyt8tsZAv/7KM3SXNuWto1/oPVgNWfwanzxfz4NKl3Nw7mhuurvmQRFbndwZX2gYrf+5kAa3LPY8GsqtaRkS8gFAgt5rrKuUWwoJ8ubF7Kz7dlMWZgmKr47i0Tzdmcb64VE+euwgrC8gGIF5E4kTEh7KT4gsrLLMQmGh/fBuwzBhj7NPvtLfSigPigfX1lFspp5s0MJZzRaXMT86yOorLstkMs9dm0LtNE7pGhVodR2FhATHGlACPUNbT727gY2PMThF5UURG2Rd7FwgTkVTg18DT9nV3Ah8Duyjrq+thY0xpfW+DUs7SLTqU3m2aMGtNOjZt0lupFSnHOHD8rPa660Isvf7fGLMIWFRh2u/LPS4Abq9i3T8Bf6rTgErVo4kDY5k6bws/pBxjWEdtnlrRrDUZhAf5cm3XllZHUXau3eRDqUbk2q4tiQj21Sa9lcg4cZble3O4q18bfLz0a8tV6CehlIvw8fJgXL82JO0tO1Sj/uuDtRl4iuiQtS5GC4hSLuSufm3w9hTtpbec80WlfLQhk2u6tiAyxM/qOKocLSBKuZDmwX5c160l85OzOFtYYnUcl7BgyyHOFJQwSU+euxwtIEq5mIkDY8krLOGzTdqk1xjDzDUZdG4ZQmJMU6vjqAq0gCjlYnq1bkL36FBmrsmg7LKnxis54yS7D59h4oAYHbLWBWkBUcrFiAgTB8SSmpPPqtQTVsex1MzV6YT4eTG6Z6Vd3SmLaQFRygXd0KMlYYE+zGjETXqPning2x1HGNOnNf4+OlqDK9ICopQL8vXyZGzfNizdc5TM3HNWx7HEnHUHKTVGh6x1YVpAlHJR4/q3wUOE2WszrI5S74pKbHy47iDDOjYnJizQ6jiqClpAlHJRLUP9GdmlBR9tyOR8UePq6u2bHYc5nl/IhAG69+HKtIAo5cImDozl9PlivthyyOoo9WrWmgxiwwIYEh9hdRR1EVpAlHJhfWKb0rllCDNXpzeaJr07Dp1mY8ZJxg+IxUOHrHVpWkCUcmEiwqSBMew5kse6A7lWx6kXs9ak4+/tyW0J0VZHUZegBUQpFze6ZxRNArwbRS+9J88WsWBLNrf0jiLU39vqOOoStIAo5eL8vD0Z06c13+06Svap81bHqVMfJ2dSWGLTIWvdhBYQpdzA+P4xGGP4oAE36S21D1nbv20zOrYItjqOqgYtIEq5geimAVzZOZJ5GzIpKG6YTXqX7ckh6+R5Jureh9vQAqKUm5g0MJbcs0V8uTXb6ih1YubqdFqE+HHVZZFWR1HVpAVEKTcxoF0YHSKDmLmm4TXp3Xskj5Wpxxk/IAYvT/1acheWfFIi0kxElohIiv3+Fx39i0hPEVkjIjtFZJuIjCk3b4aIHBCRLfZbz/rdAqXqn4gwYUAsOw6dYdPBk1bHcaoZqw/g6+XBXX11yFp3YlWpfxpYaoyJB5ban1d0DphgjOkCjAReE5Em5eY/aYzpab9tqfvISlnv5l5RBPt5MWN1wzmZfvJsEZ9tOsQtvaNoGuhjdRxVA1YVkNHATPvjmcBNFRcwxuwzxqTYH2cDOYD2a6AatUBfL+5IbM032w9z9EyB1XGc4sP1BykssTF5UJzVUVQNiRXHUkXklDGmSbnnJ40xVY5XKSJ9KSs0XYwxNhGZAQwACrHvwRhjCqtYdwowBSAyMjJh3rx5DmXOz88nKCjIoXVdgbvnB/ffBmflzzln439XnGdUO29ujq/fX+zO/gxKbIYnfzhPqyDhyT7+Tnvdqrj73xBYsw3Dhg3baIxJ/MUMY0yd3IDvgR2V3EYDpyose/Iir9MS2Av0rzBNAF/KCsvvq5MpISHBOGr58uUOr+sK3D2/Me6/Dc7MP/n99SbhD0tMYXGp016zOpz9GSzYcsjE/O9X5vtdR5z6ulVx978hY6zZBiDZVPKdWmeHsIwxVxpjulZyWwAcFZGWAPb7nMpeQ0RCgK+B3xlj1pZ77cP27SoE3gf61tV2KOWKJg6M5Xh+IYu2H7Y6Sq28v+oAsWEBDOvY3OooygFWnQNZCEy0P54ILKi4gIj4AJ8Ds4wxn1SY91PxEcrOn+yo07RKuZjB7cNpGx7o1kPebj54ks0HTzFpoPa6666sKiB/Aa4SkRTgKvtzRCRRRKbbl7kDGAJMqqS57hwR2Q5sB8KBP9ZvfKWs5eEhTBgQw5bMU2zNPGV1HIe8vyqdYF8vbktsbXUU5SBLCogx5oQxZoQxJt5+n2ufnmyMuc/++ANjjLf5b1PdC811jTHDjTHd7IfE7jbG5FuxHUpZ6daEaAJ9PN2yl94jpwtYtP0wd/RpTZCvl9VxlIP0kk+l3FSwnze3JUTz1bay4V/dyey16diMYdLAWKujqFrQAqKUG5swMJaiUhtz1x20Okq1FRSX8uG6g1zZOZLWzQKsjqNqQQuIUm6sXUQQg+PD+WBdBsWlNqvjVMsXmw9x8lwx91yuFw66Oy0gSrm5SQNjOXqmkMU7j1gd5ZKMMby36gCdW4bQL66Z1XFULWkBUcrNDe3YnDbNAtziZHrSvmPsO5rP/YPjKGuFr9yZFhCl3JynvUnvhvSTbMty7Sa9/1mRRosQP27o3srqKMoJtIAo1QCM6dOaYF8v3l6RZnWUKu04dJrV+08weVAsPl761dMQ6KeoVAMQ7OfNXf3b8M32wxw8cc7qOJWa/mMaQb5ejO2nY340FFpAlGog7hkUh6eH8O5K19sLyT51ni+3HebOPq0J8fO2Oo5yEi0gSjUQkSF+jO4ZxUfJmeSeLbI6zs+8v+oAAJO16W6DogVEqQZkypC2FBTbmL3GdUYsPFNQzNz1mdzQvSVRTep+zA9Vf7SAKNWAdIgMZnin5sxak05BcanVcQCYt/4g+YUl3D+4rdVRlJNpAVGqgZkypC0nzhYxf2OW1VEoKrHx3sp0BrYLo2tUqNVxlJNpAVGqgekX14we0aFM/zGNUlv9D1ld3tfbszlypoD7h+jeR0OkBUSpBkZEmDKkHeknzrFkl3XdmxhjeGfFAeKbBzG0Q4RlOVTd0QKiVAM0smsL2jQL4K0f0igb0rr+Je07xu7DZ5gypK12W9JAaQFRqgHy9BDuGxzHlsxTbEg/aUmGN5en0iq0rGmxapi0gCjVQN2e0JqmAd78Oym13t97/YFcNqSfZMqQttptSQOmn6xSDZS/jyf3Xh7H8r3H2HHodL2+95tJqYQF+jCmj3Zb0pBpAVGqARs/IJZgXy/erMe9kB2HTpO09xj3XB6Hv49nvb2vqn+WFBARaSYiS0QkxX7ftIrlSkVki/22sNz0OBFZZ1//IxHxqb/0SrmPUH9vJg6M5ZsdR0jNyauX9/x30n6Cfb24u39Mvbyfso5VeyBPA0uNMfHAUvvzypw3xvS030aVm/5X4FX7+ieBe+s2rlLu657L4/Dz8uTN5fvr/L3SjuWzaMdhxg+IIdRfO01s6KwqIKOBmfbHM4GbqruilLUHHA7Md2R9pRqbZoE+3NWvDQu2Ztd5V+9v/bAfH08PHe+8kRAr2oiLyCljTJNyz08aY35xGEtESoAtQAnwF2PMFyISDqw1xrS3L9Ma+MYY07WK95oCTAGIjIxMmDdvnkOZ8/PzCQoKcmhdV+Du+cH9t8HK/CcLbDz5w3kuj/JiUldfh1/nYttw4ryNp1acZ2hrL8Zf5vh71CV3/xsCa7Zh2LBhG40xib+YYYypkxvwPbCjktto4FSFZU9W8Rqt7PdtgXSgHRABpJZbpjWwvTqZEhISjKOWL1/u8LquwN3zG+P+22B1/mc+22bin1lkDp867/BrXGwbnluww7Sb9rXJzD3r8OvXNas/A2ewYhuAZFPJd2qdHcIyxlxpjOlayW0BcFREWgLY73OqeI1s+30akAT0Ao4DTUTEy75YNJBdV9uhVEPxqyvaUWoM79TBsLdHThfw4fqD3JYQTXTTAKe/vnJNVp0DWQhMtD+eCCyouICINBURX/vjcGAQsMteDZcDt11sfaXUz7VuFsBNPaP4cH0Gx/IKnfra/05KxWYzPDysvVNfV7k2qwrIX4CrRCQFuMr+HBFJFJHp9mU6A8kispWygvEXY8wu+7z/BX4tIqlAGPBuvaZXyk09PKwdRSU23v7BeS2yDp8+z9z1mdyWEE3rZrr30Zh4XXoR5zPGnABGVDI9GbjP/ng10K2K9dOAvnWZUamGqG1EEDf3imb22gzuH9KWyBC/Wr/mv5P2YzO699EY6ZXoSjUyU0fEU2IzvLm89lenHz59nnnrM7k9Ufc+GiMtIEo1Mm3CArg9IZq56zPJPnW+Vq/15nLd+2jMtIAo1Qg9Mrw9BsMbtdgLyT51no82ZHJ7YmttedVIaQFRqhGKbhrAnX3a8PGGTDJzHbs6/c2kVAyGh4e1c3I65S60gCjVSD08rD0eHsI/l6XUeN2DJ84xb30md+jeR6NmSSssV1JcXExWVhYFBQUXXS40NJTdu3fXUyrnc7f8fn5+REdH4+2tHfLVlRahfozr14ZZazJ4cGh74sIDq73u35fsxctTeGxEfB0mVK6u0ReQrKwsgoODiY2Nvei4zXl5eQQHB9djMudyp/zGGE6cOEFWVhZxcdopX116cGg75q3P5O/f7eWNu3pXa52d2adZsCWbh4a2c0ozYOW+Gv0hrIKCAsLCwi5aPFT9EhHCwsIuuVeoaq95sB/3D47jq22H2Zp5qlrr/N/ivYT6e/PAFXruo7Fr9AUE0OLhgvQzqT9TrmhHWKAPLy3a/VMHpVXak1tK0t5jPDS0nY73obSAKNXYBfl6MfXKeNYdyGX53kr7NQXKDi1+sreIFiF+TBwYW38BlcvSAtKAffHFF7z44otVzk9OTuaxxx6rx0Q/V1RUxJAhQygpKbEsgyoztm8bYsMC+Os3eym1Vb4XsmTXUfaftvH4lfH4eetY50oLSIP28ssv89BDD1U5PzExkddff70eE/2cj48PI0aM4KOPPrIsgyrj7enBk9d0Yu/RPD7dlPWL+cWlNv767R5aBAq3JURbkFC5okbfCqu8F77cya7sM5XOKy0txdOz5r+6LmsVwnM3dqlyfnp6OiNHjuTyyy9n7dq19OjRg8mTJ/Pcc8+Rk5PDnDlz6Nu3L+vXr+fxxx/n/Pnz+Pv78/7779OxY0deeeUVduzYwXvvvcf27dsZO3Ys69evJysrC19fX8LDwwH4/PPPefnll/H09CQ0NJQVK1aQlJTE3/72N7766iuef/55Dh48SFpaGgcPHuTxxx+/5N7Jhg0bmDp1KmfPnsXX15elS5fi7e3Ngw8+SHJyMl5eXrzyyisMGzaMnTt3MnnyZIqKirDZbHz66afEx8dz0003MW3aNMaNG1fjf1vlXNd1a0GP1k145bt93Ni9Ff4+//17n7M2g/3HzjK1ty9envq7U5XRvwQXkJqaytSpU9m2bRt79uzhww8/ZOXKlfztb3/jpZdeAqBTp06sWLGCzZs38+KLL/LMM88A8Pjjj5Oamsrnn3/O5MmTefvttwkICGDVqlX07v3fZpl//etfWbx4MVu3bmXhwoWV5tizZw+LFy9m/fr1vPDCCxQXF1eZuaioiDFjxvCPf/yDrVu38v333+Pv78+//vUvALZv387cuXOZOHEiBQUFvPXWW0ydOpUtW7aQnJxMdHTZr9iuXbuyYcMGp/w7qtoREZ65thNHzhQw/cf/Djp18mwRr36fwuXtw+kZoYeu1H/pHkg5F9tTqMvrKOLi4ujWrazn+i5dujBixAhEhG7dupGeng7A6dOnmThxIikpKYjIhS93Dw8PZsyYQffu3XnggQcYNGgQAIcPHyYiIuLCe/Tv359JkyZxxx13cMstt1Sa4/rrr8fX1xdfX1+aN2/O0aNHL3zRV7R3715atmxJnz59AAgJCQFg5cqVPProo0BZ0YuJiWHfvn0MGDCAP/3pT2RlZXHLLbcQH192AZqnpyc+Pj5udZ1KQ9avbRgju7TgzaT93J7YmhahfvxjaQp5BcX87obOHNmzyeqIyoXoHogL8PX1vfDYw8PjwnMPD48LJ5ifffZZhg0bxo4dO/jyyy9/do1ESkoKQUFBZGf/d2Rff3//ny3z2muv8cc//pHMzEx69uzJiRMnLprD09Pzoie3jTGVNrWtqhnoXXfdxcKFC/H39+eaa65h2bJlF+YVFhbi56cXpLmKZ67rTKnN8PK3e0jNyWP22gzG9m1DpxYhVkdTLkYLiJs4ffo0UVFRAMyYMeNn06dOncqKFSs4ceIE8+fPB6Bz586kpv63p9W0tDT69evHiy++SHh4OJmZmdV+7xEjRnDo0KGfTevUqRPZ2dkXDj/l5eVRUlLCkCFDmDNnDgD79u3j4MGDdOzYkbS0NNq2bctjjz3GqFGj2LZtGwAnTpwgIiJCuyxxIW3CArhvcByfbT7Erf9eQ4C3J7++qoPVsZQL0gLiJp566immTZvGoEGDKC0tvTD9iSee4KGHHqJDhw68++67PP300+Tk5DBkyBA2b958YY/g2WefpVu3bnTt2pUhQ4bQo0ePar2vzWYjNTWVZs2a/Wy6j48PH330EY8++ig9evTgqquuoqCggIceeojS0lK6devGmDFjmDFjBr6+vnz00Ud07dqVnj17smfPHiZMmADA8uXLue6665z0r6Sc5aFh7fHx9OD0+WIeGxFPWJDvpVdSjY8xptHcEhISTEW7du36xbTKnDlzplrLuZLHHnvMLFmyxBjjeP7t27ebJ554wpmxfubmm282e/bsqXRexc9m+fLldZajPrhb/uT0XPPSol2moLjkwjR324aK3D2/MdZsA5BsKvlO1ZPoDdgzzzzDunXravUaXbt25ZVXXnFSop8rKiripptuomPHjnXy+qp2EmKakhDT1OoYyoVZcghLRJqJyBIRSbHf/+KvVESGiciWcrcCEbnJPm+GiBwoN69n/W+F64uMjGTUqFFWx6iSj4/PhUNZSin3Y9U5kKeBpcaYeGCp/fnPGGOWG2N6GmN6AsOBc8B35RZ58qf5xpgttQljLtGBnKp/+pko5fqsKiCjgZn2xzOBmy6x/G3AN8YYx8bevAg/Pz9OnDihX1guxNjHA9GmvUq5NrHii1NEThljmpR7ftIYU+XBVhFZBrxijPnK/nwGMAAoxL4HY4wprGLdKcAUgMjIyIR58+ZVnE9gYOAluykxVVz34C7cLX9paSlnz579WWHPz88nKCjIwlS14+75wf23wd3zgzXbMGzYsI3GmMRfzKjszLozbsD3wI5KbqOBUxWWPXmR12kJHAO8K0wTwJeyPZjfVydTZa2wqsvdW2+4e35j3H8b3D2/Me6/De6e35hG0grLGHNlVfNE5KiItDTGHBaRlkDVgxDAHcDnxpgLHTMZYw7bHxaKyPvAb5wSWimlVLVZdQ5kITDR/ngisOAiy44F5pafYC86SNkxmZso27NRSilVj6wqIH8BrhKRFOAq+3NEJFFEpv+0kIjEAq2BHyqsP0dEtgPbgXDgj/WQWSmlVDmWnES3iogcAzIcXD0cOO7EOPXN3fOD+2+Du+cH998Gd88P1mxDjDEmouLERlVAakNEkk1lrRDchLvnB/ffBnfPD+6/De6eH1xrG7QzRaWUUg7RAqKUUsohWkCq7x2rA9SSu+cH998Gd88P7r8N7p4fXGgb9ByIUkoph+geiFJKKYdoAVFKKeUQLSCXICIjRWSviKSKyC+6nXd1IvKeiOSIiFterS8irUVkuYjsFpGdIjLV6kw1JSJ+IrJeRLbat+EFqzM5QkQ8RWSziHxldRZHiEi6iGy3jyGUbHWemhKRJiIyX0T22P8/DLA8k54DqZqIeAL7KLtaPgvYAIw1xuyyNFgNiMgQIB+YZYzpanWemrJ3W9PSGLNJRIKBjcBNbvYZCBBojMkXEW9gJTDVGLPW4mg1IiK/BhKBEGPMDVbnqSkRSQcSjTFueSGhiMwEfjTGTBcRHyDAGHPKyky6B3JxfYFUY0yaMaYImEdZb8JuwxizAsi1OoejjDGHjTGb7I/zgN1AlLWpasbeoWm+/am3/eZWv9xEJBq4Hph+qWWV84lICDAEeBfAGFNkdfEALSCXEgVklnuehZt9eTUk9r7RegG1G+jdAvbDP1so63l6iTHG3bbhNeApwGZ1kFowwHcistE+TpA7aUvZsBbv2w8jTheRQKtDaQG5uMpGYHKrX44NhYgEAZ8Cjxtjzlidp6aMMaWmbHjmaKCviLjN4UQRuQHIMcZstDpLLQ0yxvQGrgUeth/edRdeQG/g38aYXsBZKhkKvL5pAbm4LMp6A/5JNJBtUZZGy37e4FNgjjHmM6vz1Ib9sEMSMNLiKDUxCBhlP4cwDxguIh9YG6nmjDHZ9vsc4HPKDlG7iywgq9ye63zKCoqltIBc3AYgXkTi7Cet7qRsLBNVT+wnoN8FdhtjXrE6jyNEJEJEmtgf+wNXAnusTVV9xphpxphoY0wsZf8Hlhlj7rY4Vo2ISKC9EQb2Qz9X40bjCBljjgCZItLRPmkEYHlDkjobkbAhMMaUiMgjwGLAE3jPGLPT4lg1IiJzgaFAuIhkAc8ZY961NlWNDALGA9vt5xAAnjHGLLIwU021BGbaW/V5AB8bY9yyKawbiwQ+L/s9ghfwoTHmW2sj1dijlI2F5AOkAZMtzqPNeJVSSjlGD2EppZRyiBYQpZRSDtECopRSyiFaQJRSSjlEC4hSSimHaAFRSinlEC0gSimlHKIFRCkLiUgfEdlmHzMk0D5eiNv0k6UaN72QUCmLicgfAT/An7L+jv5scSSlqkULiFIWs3dNsQEoAAYaY0otjqRUteghLKWs1wwIAoIp2xNRyi3oHohSFhORhZR1kx5H2fC9j1gcSalq0d54lbKQiEwASowxH9p7610tIsONMcuszqbUpegeiFJKKYfoORCllFIO0QKilFLKIVpAlFJKOUQLiFJKKYdoAVFKKeUQLSBKKaUcogVEKaWUQ/4fCXOwK2bayM8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Erstellen der binaeren Maske\n", "maske = cos - sin[1:] < 0\n", "\n", "# Erstellen des Maximumsarrays\n", "mix = cos\n", "mix[maske] = sin[1:][maske]\n", "\n", "# Plotten der Daten\n", "plt.figure()\n", "plt.plot(wertebereich[1:], mix, label='max(sin, cos)')\n", "plt.grid()\n", "plt.xlabel('x')\n", "plt.ylabel('f(x)')\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "loesung", "hide-cell" ] }, "source": [ "### Lösungsvorschlag" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "tags": [ "loesung", "hide-cell" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3hUZdrH8e+d3gMkIUACSYBQpJPQBSkWbGBHRJoF14ruu/qKu65ld91d3111XddVF5UigooFVBQRiEgn9E5CSEgIECCUBEid5/0jIxtjAslkkjOT3J/rmmtmTpn5HSbMPeec5zyPGGNQSimlasrD6gBKKaXckxYQpZRSDtECopRSyiFaQJRSSjlEC4hSSimHeFkdoD6Fh4eb2NhYh9Y9e/YsgYGBzg1Uj9w9P7j/Nrh7fnD/bXD3/GDNNmzcuPG4MSai4vRGVUBiY2NJTk52aN2kpCSGDh3q3ED1yN3zg/tvg7vnB/ffBnfPD9Zsg4hkVDZdD2EppZRyiBYQpZRSDtECopRSyiFaQJRSSjlEC4hSSimHWFpAROQ9EckRkR1VzBcReV1EUkVkm4j0Ljdvooik2G8T6y+1UkopsH4PZAYw8iLzrwXi7bcpwL8BRKQZ8BzQD+gLPCciTes0qVJKqZ+x9DoQY8wKEYm9yCKjgVmmrM/5tSLSRERaAkOBJcaYXAARWUJZIZpbFzk/25TFyv1FZPikEx7kS/vmQcSGB+Dr5VkXb+d2jDEcPVPIoVPnOHK6kILiUgCC/LyIDPEjplkATQN9LE6pVONgjOFYXiEpOfkczD3HmfPF5BWUcN/gOJoEOPf/oatfSBgFZJZ7nmWfVtX0XxCRKZTtvRAZGUlSUlKNQ8zcWMDWY6V8lrLzwjQvD+jQ1IOu4Z70a+FFmL/VO3MXl5+f79C2V+V0oWFzTglbj5Wy/5SNM0UXH1cmwl9o39SDXhFedIvwxN9Lavyezt6G+ubu+cH9t8Hd80Pl21BiM2w9VsqWnFJ2niglt+Dn/x8FaFl8iKgg535PuXoBqexbxlxk+i8nGvMO8A5AYmKiceQKzqFD4ftly+nVdyBHzhSQmpPPtqzTrEo9zsd78/hkXzED24Vxz6A4hndqjkjNvxzrmjOuXrXZDCtTjzNrTTpL9+RgDLRu5s+VXZvRs3UT2jQLoEWoH/7eZXtmeQUlHDldQOqxfLZlnWJtWi5rsgvx9fJgVI9WTBgQS7fo0HrdBiu5e35w/21w9/zw8204crqAd1emMX9jFifPFRPi58Wg9pH0jWtGx8hgYsIDCfX3JtDHs06+l1y9gGQBrcs9jway7dOHVpieVJdBvDyEsCBfwoJ86dIqlNE9y3Z4MnPP8dmmQ3ycnMm9M5Pp1CKYp0Z2ZHinyLqMU6+MMaxIOc7L3+5hZ/YZwoN8eGhoO27o3opOLYIv+ofZNSqUKyn7tyi1GTZmnOTzzYdYsOUQn2zMYmjHCH5zdUe6RlW/kCjV2OWcKeAfS1P4JDmLUmMY2aUFtyVEMzg+HC/P+jsa4uoFZCHwiIjMo+yE+WljzGERWQy8VO7E+dXANCsCtm4WwNQr43loWDsWbsnmjeWp3DMjmeGdmvPsDZcRF+7eHbcdOH6W336+ndX7TxDd1J+/3d6DG3u0dOj8j6eH0DeuGX3jmjHtuk7MWXuQt1fs54Z/ruSOxGieua6z04/RKtWQlJTa+C69mEeX/0BBSSm3J7bmwSva0bpZgCV5LC0gIjKXsj2JcBHJoqxllTeAMeYtYBFwHZAKnAMm2+flisgfgA32l3rxpxPqVvH29ODWhGhu7NGKmavT+cfSFEa+toJnruvMhAExLnlY62JKSm1MX3mAV5fsw8fLg+dvvIy7+sXg4+WcXzchft48OLQd4/q34V/LU5n+4wGW7s7h+VFduLFHK6e8h1INyf5j+Uydt5kdh4oY0iGCF0Z1sfwHqtWtsMZeYr4BHq5i3nvAe3WRqzZ8vDy4f0hbRvdsxVOfbuO5hTtZuieHV+7oQXiQr9XxqiXnTAGPzt3MugO5XNMlkj+M7krzEL86ea8QP2+mXduZm3pGMe2z7Tw6dzMrU47z/Kgu+PtoKzeljDF8tCGTF77chZ+3Bw/39OU3Y/q4xI9S12465Maah/jx/qQ+/GF0F9alnWD0G6vYcei01bEuaW3aCa57fSXbsk7zyh09eOvuhDorHuV1bhnC/F8N4JFh7fl4Yyaj3lhJ+vGzdf6+SrmyohIb0z7bztOfbad3TBO+fXwIfVp4uUTxAC0gdUpEGD8glk8fHIjNGG57azWLth+2OlaVPknO5O7p6wj192LBI4O4pXd0vf6henl68JtrOjLrnr4czy/k5jdXsSHd0iOTSlkm92wRd7+7jnkbMnl0eHtm39OPyHr4MVcTWkDqQdeoUBY+cjldWoXy8Ieb+GBtpWOzWMYYwz++T+HJ+dvo3zaMzx8eRIfIYMvyDI6P4POHBtE0wIdx/1nHwq3ZlmVRygrZp85z279XsyXzFP+4syf/c3VHPDxcY6+jPC0g9SQi2Jc59/VjeMfm/O6LHfxreSplp3isZYzhxa928er3+7i1dzTvTepDiJ+31bGIDQ/ks4cG0rNNE6bO28zHGzIvvZJSDUDGibPc/tYajuUVMue+fhcuGXBFWkDqkZ+3J2+NT+DmXlH83+K9/HNZqqV5jDG88OUu3l+Vzj2D4vjb7d2d1srKGZoE+DBzcl8ubx/OU59uY+nBYqsjKVWnUnPyuf2tNZwrKuHD+/vTJ7aZ1ZEuynW+LRoJb08P/n57D27tHc0rS/Yx/cc0S3IYY3h+4U5mrE7n/sFxPHtDZ5c5MVeev48n0ycmcmXn5szeVaR7IqrByjp5jvHvrsNmDPOmDKhRLw1W0QJiAQ8P4a+3duP6bi3549e7LTkn8ur3Kcxck8GUIW155jrXLB4/8fXy5M1xCXQN8+Tpz7bx7Q7XbYiglCOO5RUy/t31nC0sYdY9/ejYwrpzkDWhBcQiXp4evDqmJyM6NefZBTtYvPNIvb33B2szeH1pCmMSWzPt2k4uXTx+4uPlwaO9fOnRugmPzd3CqtTjVkdSyinyCoqZ+N56jpwu4P3JfbisVYjVkapNC4iFfLw8eOOu3nSPbsLj87awLetUnb/n4p1H+P2CHQzv1Jw/3dzVLYrHT3y9hPcn9SEuPJBfzd5Iak6e1ZGUqpVSm+GxuZvZezSPt8YnkBDj2uc8KtICYjF/H0+mT0ikWaAP985M5tCp83X2Xruyz/D4vC10i27CG3f1qtdO15ylSYAP70/ug6+3J/fMSObk2SKrIynlsD99vZvle4/x4uguXNEhwuo4NeZ+3yANUESwLzMm96GguJT7ZiZfGJDJmfKKDFNmJxPi78V/xicQ4OPq/WhWrVUTf96ZkMCRMwX86oONFJXYrI6kVI19uO4g7606wORBsYzrF2N1HIdoAXER8ZHBvD62F3uOnOF3X+xw6jUiJaU23txSQE5eIW+PT6yXrknqWu82TXn51u6sO5DLH77aZXUcpWpk88GTPLdwB1d0iOC313W2Oo7DtIC4kGEdm/Po8Hjmb8xi7nrnNVf98zd72J1r46Wbu9GzdROnva7VbuoVxf2D45i9NkOvVldu4+TZIh6es4nIED9ev9M9DyX/xH2TN1BTR8QzpEMEzy/cydbM2p9U/27nEd5deYAr23hxW0K0ExK6lqdGdiIhpinTPt3G/mP5VsdR6qJsNsMTH2/heH4Rb47rTWiA9b0+1IYWEBfj6SH8Y0xPIoJ9efjDTeQVOH71dfap8zw5fxtdo0IY06lhDtTk7enBG3f1wsfLg4fnbOJ8kfPPHynlLP/+YT9Je4/x7I2X0T3a/Y8GaAFxQU0DfXh9bE+yT53nuYU7HXqNklIbj8/bQkmpjX+O7Y23C3bE5iwtQ/15dUxP9h7N48WvHPv3UqqubT54kleW7OPGHq24u18bq+M4hRYQF5UQ04xHh8fz2aZDDh3ff31ZKuvTc/njzV0tH7WsPgzt2JwpQ9oyd30m3+86anUcpX7mXFEJT3y0hRYhfm53/dXFaAFxYY8Ob0+vNk347efba3R9yJbMU7yxLIVbekdxc6+Gd96jKr++qgOdWgTz9GfbOJFfaHUcpS7409e7ycg9x9/v6OESvV07ixYQF+bl6cFrY3pisxn+5+Mt2GyXbtpbUFzKbz7ZSmSIH8+P6lIPKV2Hr5cnr93ZkzPnS5j22XaX6C5fqeV7cpiz7iBTBrelf9swq+M4lRYQFxcTFsizN1zG2rRc5m44eMnlX/1+H6k5+fz11u4N6pdOdXVqEcJvrunAd7uOMn9jltVxVCN36lwRT326jU4tgvn11R2sjuN0lhYQERkpIntFJFVEnq5k/qsissV+2ycip8rNKy03b2H9Jq9fY/q0ZlD7MP68aA/ZFzmUtTHjJP9ZkcbYvm0Y4obdIjjLvZe3pW9sM/7w1S5y8gqsjqMasT99vZvcs0X8/Y4e+Hp5Wh3H6SwrICLiCfwLuBa4DBgrIpeVX8YY84QxpqcxpifwT+CzcrPP/zTPGDOq3oJbQET4883dKbUZfvt55YdmCopLefKTrbQM9ee317vvla3O4Okh/PnWbhSU2HhhoV6lrqyxMuU4n2zM4oEhbenSyvXH9nCElXsgfYFUY0yaMaYImAeMvsjyY4G59ZLMBbUJC+A313Rk+d5jLNjyy1ZZbyxLJe34WV6+rTtBvu7bz5WztIsI4rHh7fl6+2G+q8eu8pUCOF9UyjOfbycuPJDHRsRbHafOiFUnGkXkNmCkMeY++/PxQD9jzCOVLBsDrAWijTGl9mklwBagBPiLMeaLKt5nCjAFIDIyMmHevHkO5c3PzycoKMihdZ3FZgwvrSvg8Fkbfx4cQIhPWVPA7Hwbz646T/+WXtzf3bfSdV0hf23VdBtKbIbnV5/nbDG8NNgffy9rm042xs/A1dRX/nl7ivg2vZin+/rRqZlzD11Z8RkMGzZsozEm8RczjDGW3IDbgenlno8H/lnFsv9bcR7Qyn7fFkgH2l3qPRMSEoyjli9f7vC6zrTvyBnTbtrX5jcfbzHGGGOz2cztb6023Z9fbI7nFVS5nqvkrw1HtmHzwZMm9umvzO8+3+78QDXUWD8DV1If+bdnnTJxT39lnv50a528vhWfAZBsKvlOtfIQVhbQutzzaKCqK+bupMLhK2NMtv0+DUgCejk/ouuJjwzmvsFt+WRjFhvSc5m/MYv1B3KZdm0nwoIq3/tozHq2bsKkgbHMXpvBFif0LabUxdhshmcX7KBZoA9PX9vwz0VaWUA2APEiEiciPpQViV+0phKRjkBTYE25aU1FxNf+OBwYBDSas6WPjWhPq1A/HvlwEy9+tYvEmKbckdj60is2Ur++qgMRwb48t2BHta6lUcpRn20+xOaDp3j62s6E+jf8ZvSWFRBjTAnwCLAY2A18bIzZKSIvikj5VlVjgXn23aifdAaSRWQrsJyycyCNpoAE+Hjx3KguHD1TSF5BCX+8uSseDbivq9oK9vNm2rWd2Jp1mk82Oq+bfKXKO1NQzF++2U3vNk24pVeU1XHqhaXNdYwxi4BFFab9vsLz5ytZbzXQrU7DubirL4tk6oh42kYE0qlFiNVxXN7NvaL4cN1BXv52LyO7tHT7brSV63ltSQonzhYxY3LfRvODTq9Ed1MiwhNXdWB0z8bxS6e2RIQXRnfh5LkiXv1+n9VxVAOz90geM9ekc1ffNnSNapjXfFRGC4hqNLq0CmVcvxhmrUln9+EzVsdRDYQxhucW7iDYz4vfXN3R6jj1SguIalT+5+oOhPh789Ki3VZHUQ3Ekl1HWZuWy/9c3ZGmgQ1z4LaqaAFRjUqTAB8eHR7PjynH+WHfMavjKDdXXGrjL9/soV1EIGP7NL6WkFpAVKMzvn8MMWEBvPT1bkq1Wa+qhXnrD5J2/CzTru2Ml2fj+zptfFusGj0fLw+eHtmJvUfz+CRZm/Uqx+QVFPPa9yn0i2vGiM7NrY5jCS0gqlEa2bUFCTFN+fuSfZwtLLE6jnJDb/2wnxNni/jt9Z0bzBC1NaUFRDVKIsJvr+/MsbxC3lmRZnUc5WYOnz7P9B8PMLpnK7pHN7E6jmW0gKhGq3ebplzfvSXvrEjTgadUjfz9u30YQ6NrtluRFhDVqD15dUeKSm28uXy/1VGUm0g5msenm7KYODCG1s0CrI5jKS0gqlGLDQ/k9oRoPlx3kEMXGS5YqZ+8+v0+An28eGhoe6ujWE4LiGr0HrWPGPf69ykWJ1Gubseh0yzafoR7Lo9rdBcNVkYLiGr0opr4M65/G+ZvyiLtWL7VcZQLe3XJPkL9vbn38jiro7gELSBKAQ8NbY+Ppwev6l6IqsKmgydZuieHKUPaNoqxPqpDC4hSQESwL5MHxfLl1mx2ZWtHi+qXXvluH+FBPkwaGGt1FJehBUQpuweGtCPYz4tXluy1OopyMWv2n2Bl6nEeHNqeQF9Lh1FyKVpAlLILDfBmyuC2fL87h+1Zp62Oo1yEMYa/f7eXFiF+jOvXxuo4LkULiFLlTBoUS4ifF68v03MhqsyPKcdJzjjJw8Pb4+ftaXUcl6IFRKlygv28uffytizZdZSd2boXouCNZam0DPXjjsRoq6O4HC0gSlUwaVAswb5evLEs1eooymJr006wPj2XX13RDl8v3fuoyNICIiIjRWSviKSKyNOVzJ8kIsdEZIv9dl+5eRNFJMV+m1i/yVVDFurvzeRBsXyz4wh7j+RZHUdZ6I1lqYQH+TKmEQ4WVR2WFRAR8QT+BVwLXAaMFZHLKln0I2NMT/ttun3dZsBzQD+gL/CciDStp+iqEbjn8jgCfTz5p54LabQ2HTzJytTjPDCkrZ77qIKVeyB9gVRjTJoxpgiYB4yu5rrXAEuMMbnGmJPAEmBkHeVUjVCTAB8mDozl6+2HSc3RvZDG6I1lqTQN8OYubXlVJSsbNEcB5YeDy6Jsj6KiW0VkCLAPeMIYk1nFulGVvYmITAGmAERGRpKUlORQ2Pz8fIfXdQXunh/qfxs6exh8PODZuat4oIdfrV9PPwPrVTd/+ulSlu0p4NZ4bzasWVn3wWrAlT4DKwtIZUN4VRyg+ktgrjGmUER+BcwEhldz3bKJxrwDvAOQmJhohg4d6lDYpKQkHF3XFbh7frBmG3aU7OY/P6bx0rg+xIUH1uq19DOwXnXz/2r2RkL8jvPcuGGE+LlWtyWu9BlYeQgrCyh/ZioayC6/gDHmhDGm0P70P0BCdddVyhnuG9wWL08P3lmh44U0FnuP5PHtziNMGhTncsXD1VhZQDYA8SISJyI+wJ3AwvILiEjLck9HAbvtjxcDV4tIU/vJ86vt05RyqohgX+5IjObTjYfIOaOjFjYG/1qeSqCPJ/cMirU6isuzrIAYY0qARyj74t8NfGyM2SkiL4rIKPtij4nIThHZCjwGTLKvmwv8gbIitAF40T5NKaebMrgdJTYb7646YHUUVccyc8/x1bZs7u4fQ5MAHe/jUiztFcwYswhYVGHa78s9ngZMq2Ld94D36jSgUkCbsACu796KOWsP8tDQ9tqVdwM2/cc0PD2Ee3S8j2rRK9GVqoYHhrQlv7CED9ZmWB1F1ZHcs0V8lJzJzb2iiAypfau7xkALiFLV0DUqlMHx4by/Kp2C4lKr46g6MHN1OgXFNqYMaWt1FLehBUSpanpwaDuO5xcyf2OW1VGUk50rKmHWmnSu7BxJ++bBVsdxG1pAlKqmAW3D6BEdyjsr0igptVkdRznRJ8lZnDxXzK+u0L2PmtAColQ1iQgPDm3HwdxzfLPjiNVxlJOUlNr4z49pJMQ0JTG2mdVx3IoWEKVq4KrLWtA2PJC3ftiPMZV2fqDczKIdR8g6eZ4H9NxHjWkBUaoGPD2EKUPasjP7DKtST1gdR9WSMYa3f9hPu4hAruwcaXUct6MFRKkauqlXFOFBPkxfmWZ1FFVLq1JPsDP7DA8MaYeHR2Vd7KmL0QKiVA35eXsyvn8sSXuPkXJUu3p3Z2+v2E/zYF9G92pldRS3pAVEKQfc3b8Nvl4evKfdm7it3YfP8GPKcSYNitXhah2kBUQpB4QF+XJL72g+3XSIE/mFl15BuZz3Vh7A39uTcX1jrI7itrSAKOWgey+PpajExmzt3sTtHMsrZMGWbG5LiCY0QPs2c5QWEKUc1L55MMM6RjB7TYZ2b+JmPlibQVGpjcnaZXutaAFRqhbuG9yWE2eLWLDlkNVRVDUVFJcyZ10Gwzs1p21EkNVx3JoWEKVqYWC7MDq3DGH6jwf0wkI3sXBrNsfzi7hXu2yvNS0gStWCiHDf5XGk5OSzIuW41XHUJRhjeG/lATq1CGZguzCr47g9LSBK1dKNPVrRPNiX6T/qhYWubneujT1H8rhnUBwieuFgbWkBUaqWfLw8mDgwlh9TjrPnyBmr46iLWJxeTHiQD6N66oWDzqAFRCknGNevDf7enrz7o15Y6KrSjuWz9Vgp4/rF4OetFw46gxYQpZygSYAPt/SOYsHWbHLPFlkdR1Xi/VXpeAnc3V8vHHQWSwuIiIwUkb0ikioiT1cy/9cisktEtonIUhGJKTevVES22G8L6ze5Ur80aWDZhYVz1x+0Ooqq4NS5IuZvzKJ/Ky8ign2tjtNgWFZARMQT+BdwLXAZMFZELquw2GYg0RjTHZgPvFxu3nljTE/7bVS9hFbqIuIjg7m8fTiz12RQrCMWupR5GzI5X1zK1TFeVkdpUKzcA+kLpBpj0owxRcA8YHT5BYwxy40x5+xP1wLR9ZxRqRqZNDCWI2cKWLxTRyx0FcWlNmauTmdguzDahOi5D2eyshxHAZnlnmcB/S6y/L3AN+We+4lIMlAC/MUY80VlK4nIFGAKQGRkJElJSQ6Fzc/Pd3hdV+Du+cE9tsHDGCL8hX8s2kpQ7r6fzXOH/Jfijtuw7nAJh08Xckc7Q35+gdvlr8ilPgNjjCU34HZgernn44F/VrHs3ZTtgfiWm9bKft8WSAfaXeo9ExISjKOWL1/u8LquwN3zG+M+2/CfFftNzP9+ZbZlnvrZdHfJfzHuuA23vrnKDP7rMlNaanPL/BVZsQ1AsqnkO9XKQ1hZQOtyz6OB7IoLiciVwG+BUcaYC/1mG2Oy7fdpQBLQqy7DKlVdtye2JsDHkxmr062O0ujtOHSa5IyTTBgQoyMO1gErC8gGIF5E4kTEB7gT+FlrKhHpBbxNWfHIKTe9qYj42h+HA4OAXfWWXKmLCPX35raEaL7cms1xHSvEUrPXZODv7cntCa0vvbCqMcsKiDGmBHgEWAzsBj42xuwUkRdF5KdWVf8HBAGfVGiu2xlIFpGtwHLKzoFoAVEuY8KAWIpKbcxdp016rXLqXBFfbDnETb2idMyPOmJpmzZjzCJgUYVpvy/3+Moq1lsNdKvbdEo5rn3zIIZ0iGD22gx+NbQd3p56zW59+zg5k8ISGxMG6IWDdUX/qpWqI5MHxpKTV8g3O7RJb30rtRlmr82gb1wzOrcMsTpOg1WtAiIizUXkZhF5WETuEZG+IqLFR6mLuKJDBLFhAcxYpf1j1bekvTlk5p5n4oBYq6M0aBctAiIyTEQWA19TdsV4S8quGv8dsF1EXhARLe9KVcLDQ5g4MJZNB0+xNfOU1XEalZlrMmgR4sfVXSKtjtKgXeocyHXA/caYX5wJFBEv4AbgKuDTOsimlNu7LSGavy3ey8zV6YzS77J6sf9YPiv2HeN/ruqg557q2EX/dY0xT1ZWPOzzSowxXxhjtHgoVYVgP29uT2zNl9uyOVWo/WPVh9lrMvD2FO7s28bqKA1edc+BzBaR0HLPY0Vkad3FUqrhmDAghuJSww+ZJVZHafDyC0v4dGMW13drqb3u1oPq7t+tBNaJyHUicj/wHfBa3cVSquFoGxHEFR0iWJ5ZQlGJ7oXUpc83HyKvsIQJA2OtjtIoVKuAGGPeBu4DFgAvAkOMMV/WZTClGpJJA2M5VWj4VnvprTPGGGatTqdbVCi9WjexOk6jUN1DWOOB94AJwAxgkYj0qMNcSjUoV3SIIDJAmKn9Y9WZNWknSMnJZ8KAGES036v6UN1DWLcClxtj5hpjpgG/oqyQKKWqwcNDGN7Gm40ZJ9lx6LTVcRqkWaszaBrgzY09WlkdpdGo7iGsm8p3ZmiMWc/Fx+5QSlUwOMpLe+mtI4dOnee7XUe4s28b/Lx10Kj6cqkLCX8nIs0qm2eMKRKR4SJyQ91EU6phCfAWbukdxcKt2ZzQXnqdas7aDADG9dOmu/XpUnsg24EvRWSpiPyfiDwlIr+3N+vdDtwIrKv7mEo1DBMHxFJUYmPehsxLL6yqpaC4lHkbMrmycyTRTQOsjtOoXKqA3GaMGURZl+s7AU/gDPAB0NcY84Qx5lgdZ1SqwYiPDGZQ+zDmrM2gpFSb9DrD19sOk3u2iInadLfeXaqAJIhIDDCOssGe3gZmUTYYlH8dZ1OqQZo4IJbs0wUs2XXU6igNwqw16bSLCGRguzCrozQ6lyogbwHfAp2A5HK3jfZ7pVQNjegcSXRTfz2Z7gRbMk+xNes0EwfGatNdC1yqL6zXjTGdgfeMMW3L3eKMMW3rKaNSDYqnhzC+fwzrDuSy+/AZq+O4tVmr0wny9eKW3tFWR2mUqtuM98G6DqJUYzKmT2v8vD2YtSbd6ihu63h+IV9tO8xtCdEE+Vo6uGqjpX0dK2WBJgE+3NQzis83H+LUuSKr47iljzZkUlRq4+7+OmStVbSAKGWRiQNjKSi28XGyNumtqZJSGx+szWBwfDjtmwdZHafRsrSAiMhIEdkrIqki8nQl831F5CP7/HUiEltu3jT79L0ick195lbKGTq3DKFvXDNmrcmg1GasjuNWluw6yuHTBUzQIWstZVkBERFP4F+UDZV7GTBWRC6rsNi9wEljTHvgVeCv9nUvA+4EugAjgTftr6eUW5k0MJask+dZtifn0gurC2auSSeqiT/DOzW3OkqjZuUeSF8g1RiTZowpAuYBoyssMxqYaX88HxghZW31RgPzjDGFxpgDQKr99ZRyK1dfFknLUD/tpbcG9h7JY21aLuMHxODpoU13rWRl04UooI2h44YAABrZSURBVPzB3yx+2UHjhWWMMSUichoIs09fW2HdqMreRESmAFMAIiMjSUpKcihsfn6+w+u6AnfPD+6/DVXlH9i8lE9TjvPhV8toFeTapyVd4TOYubMQbw+ILjxIUlLNzh+5Qv7acqVtsLKAVPbToeKB4KqWqc66ZRONeQd4ByAxMdEMHTq0BhH/KykpCUfXdQXunh/cfxuqyt8tsZAv/7KM3SXNuWto1/oPVgNWfwanzxfz4NKl3Nw7mhuurvmQRFbndwZX2gYrf+5kAa3LPY8GsqtaRkS8gFAgt5rrKuUWwoJ8ubF7Kz7dlMWZgmKr47i0Tzdmcb64VE+euwgrC8gGIF5E4kTEh7KT4gsrLLMQmGh/fBuwzBhj7NPvtLfSigPigfX1lFspp5s0MJZzRaXMT86yOorLstkMs9dm0LtNE7pGhVodR2FhATHGlACPUNbT727gY2PMThF5UURG2Rd7FwgTkVTg18DT9nV3Ah8Duyjrq+thY0xpfW+DUs7SLTqU3m2aMGtNOjZt0lupFSnHOHD8rPa660Isvf7fGLMIWFRh2u/LPS4Abq9i3T8Bf6rTgErVo4kDY5k6bws/pBxjWEdtnlrRrDUZhAf5cm3XllZHUXau3eRDqUbk2q4tiQj21Sa9lcg4cZble3O4q18bfLz0a8tV6CehlIvw8fJgXL82JO0tO1Sj/uuDtRl4iuiQtS5GC4hSLuSufm3w9hTtpbec80WlfLQhk2u6tiAyxM/qOKocLSBKuZDmwX5c160l85OzOFtYYnUcl7BgyyHOFJQwSU+euxwtIEq5mIkDY8krLOGzTdqk1xjDzDUZdG4ZQmJMU6vjqAq0gCjlYnq1bkL36FBmrsmg7LKnxis54yS7D59h4oAYHbLWBWkBUcrFiAgTB8SSmpPPqtQTVsex1MzV6YT4eTG6Z6Vd3SmLaQFRygXd0KMlYYE+zGjETXqPning2x1HGNOnNf4+OlqDK9ICopQL8vXyZGzfNizdc5TM3HNWx7HEnHUHKTVGh6x1YVpAlHJR4/q3wUOE2WszrI5S74pKbHy47iDDOjYnJizQ6jiqClpAlHJRLUP9GdmlBR9tyOR8UePq6u2bHYc5nl/IhAG69+HKtIAo5cImDozl9PlivthyyOoo9WrWmgxiwwIYEh9hdRR1EVpAlHJhfWKb0rllCDNXpzeaJr07Dp1mY8ZJxg+IxUOHrHVpWkCUcmEiwqSBMew5kse6A7lWx6kXs9ak4+/tyW0J0VZHUZegBUQpFze6ZxRNArwbRS+9J88WsWBLNrf0jiLU39vqOOoStIAo5eL8vD0Z06c13+06Svap81bHqVMfJ2dSWGLTIWvdhBYQpdzA+P4xGGP4oAE36S21D1nbv20zOrYItjqOqgYtIEq5geimAVzZOZJ5GzIpKG6YTXqX7ckh6+R5Jureh9vQAqKUm5g0MJbcs0V8uTXb6ih1YubqdFqE+HHVZZFWR1HVpAVEKTcxoF0YHSKDmLmm4TXp3Xskj5Wpxxk/IAYvT/1acheWfFIi0kxElohIiv3+Fx39i0hPEVkjIjtFZJuIjCk3b4aIHBCRLfZbz/rdAqXqn4gwYUAsOw6dYdPBk1bHcaoZqw/g6+XBXX11yFp3YlWpfxpYaoyJB5ban1d0DphgjOkCjAReE5Em5eY/aYzpab9tqfvISlnv5l5RBPt5MWN1wzmZfvJsEZ9tOsQtvaNoGuhjdRxVA1YVkNHATPvjmcBNFRcwxuwzxqTYH2cDOYD2a6AatUBfL+5IbM032w9z9EyB1XGc4sP1BykssTF5UJzVUVQNiRXHUkXklDGmSbnnJ40xVY5XKSJ9KSs0XYwxNhGZAQwACrHvwRhjCqtYdwowBSAyMjJh3rx5DmXOz88nKCjIoXVdgbvnB/ffBmflzzln439XnGdUO29ujq/fX+zO/gxKbIYnfzhPqyDhyT7+Tnvdqrj73xBYsw3Dhg3baIxJ/MUMY0yd3IDvgR2V3EYDpyose/Iir9MS2Av0rzBNAF/KCsvvq5MpISHBOGr58uUOr+sK3D2/Me6/Dc7MP/n99SbhD0tMYXGp016zOpz9GSzYcsjE/O9X5vtdR5z6ulVx978hY6zZBiDZVPKdWmeHsIwxVxpjulZyWwAcFZGWAPb7nMpeQ0RCgK+B3xlj1pZ77cP27SoE3gf61tV2KOWKJg6M5Xh+IYu2H7Y6Sq28v+oAsWEBDOvY3OooygFWnQNZCEy0P54ILKi4gIj4AJ8Ds4wxn1SY91PxEcrOn+yo07RKuZjB7cNpGx7o1kPebj54ks0HTzFpoPa6666sKiB/Aa4SkRTgKvtzRCRRRKbbl7kDGAJMqqS57hwR2Q5sB8KBP9ZvfKWs5eEhTBgQw5bMU2zNPGV1HIe8vyqdYF8vbktsbXUU5SBLCogx5oQxZoQxJt5+n2ufnmyMuc/++ANjjLf5b1PdC811jTHDjTHd7IfE7jbG5FuxHUpZ6daEaAJ9PN2yl94jpwtYtP0wd/RpTZCvl9VxlIP0kk+l3FSwnze3JUTz1bay4V/dyey16diMYdLAWKujqFrQAqKUG5swMJaiUhtz1x20Okq1FRSX8uG6g1zZOZLWzQKsjqNqQQuIUm6sXUQQg+PD+WBdBsWlNqvjVMsXmw9x8lwx91yuFw66Oy0gSrm5SQNjOXqmkMU7j1gd5ZKMMby36gCdW4bQL66Z1XFULWkBUcrNDe3YnDbNAtziZHrSvmPsO5rP/YPjKGuFr9yZFhCl3JynvUnvhvSTbMty7Sa9/1mRRosQP27o3srqKMoJtIAo1QCM6dOaYF8v3l6RZnWUKu04dJrV+08weVAsPl761dMQ6KeoVAMQ7OfNXf3b8M32wxw8cc7qOJWa/mMaQb5ejO2nY340FFpAlGog7hkUh6eH8O5K19sLyT51ni+3HebOPq0J8fO2Oo5yEi0gSjUQkSF+jO4ZxUfJmeSeLbI6zs+8v+oAAJO16W6DogVEqQZkypC2FBTbmL3GdUYsPFNQzNz1mdzQvSVRTep+zA9Vf7SAKNWAdIgMZnin5sxak05BcanVcQCYt/4g+YUl3D+4rdVRlJNpAVGqgZkypC0nzhYxf2OW1VEoKrHx3sp0BrYLo2tUqNVxlJNpAVGqgekX14we0aFM/zGNUlv9D1ld3tfbszlypoD7h+jeR0OkBUSpBkZEmDKkHeknzrFkl3XdmxhjeGfFAeKbBzG0Q4RlOVTd0QKiVAM0smsL2jQL4K0f0igb0rr+Je07xu7DZ5gypK12W9JAaQFRqgHy9BDuGxzHlsxTbEg/aUmGN5en0iq0rGmxapi0gCjVQN2e0JqmAd78Oym13t97/YFcNqSfZMqQttptSQOmn6xSDZS/jyf3Xh7H8r3H2HHodL2+95tJqYQF+jCmj3Zb0pBpAVGqARs/IJZgXy/erMe9kB2HTpO09xj3XB6Hv49nvb2vqn+WFBARaSYiS0QkxX7ftIrlSkVki/22sNz0OBFZZ1//IxHxqb/0SrmPUH9vJg6M5ZsdR0jNyauX9/x30n6Cfb24u39Mvbyfso5VeyBPA0uNMfHAUvvzypw3xvS030aVm/5X4FX7+ieBe+s2rlLu657L4/Dz8uTN5fvr/L3SjuWzaMdhxg+IIdRfO01s6KwqIKOBmfbHM4GbqruilLUHHA7Md2R9pRqbZoE+3NWvDQu2Ztd5V+9v/bAfH08PHe+8kRAr2oiLyCljTJNyz08aY35xGEtESoAtQAnwF2PMFyISDqw1xrS3L9Ma+MYY07WK95oCTAGIjIxMmDdvnkOZ8/PzCQoKcmhdV+Du+cH9t8HK/CcLbDz5w3kuj/JiUldfh1/nYttw4ryNp1acZ2hrL8Zf5vh71CV3/xsCa7Zh2LBhG40xib+YYYypkxvwPbCjktto4FSFZU9W8Rqt7PdtgXSgHRABpJZbpjWwvTqZEhISjKOWL1/u8LquwN3zG+P+22B1/mc+22bin1lkDp867/BrXGwbnluww7Sb9rXJzD3r8OvXNas/A2ewYhuAZFPJd2qdHcIyxlxpjOlayW0BcFREWgLY73OqeI1s+30akAT0Ao4DTUTEy75YNJBdV9uhVEPxqyvaUWoM79TBsLdHThfw4fqD3JYQTXTTAKe/vnJNVp0DWQhMtD+eCCyouICINBURX/vjcGAQsMteDZcDt11sfaXUz7VuFsBNPaP4cH0Gx/IKnfra/05KxWYzPDysvVNfV7k2qwrIX4CrRCQFuMr+HBFJFJHp9mU6A8kispWygvEXY8wu+7z/BX4tIqlAGPBuvaZXyk09PKwdRSU23v7BeS2yDp8+z9z1mdyWEE3rZrr30Zh4XXoR5zPGnABGVDI9GbjP/ng10K2K9dOAvnWZUamGqG1EEDf3imb22gzuH9KWyBC/Wr/mv5P2YzO699EY6ZXoSjUyU0fEU2IzvLm89lenHz59nnnrM7k9Ufc+GiMtIEo1Mm3CArg9IZq56zPJPnW+Vq/15nLd+2jMtIAo1Qg9Mrw9BsMbtdgLyT51no82ZHJ7YmttedVIaQFRqhGKbhrAnX3a8PGGTDJzHbs6/c2kVAyGh4e1c3I65S60gCjVSD08rD0eHsI/l6XUeN2DJ84xb30md+jeR6NmSSssV1JcXExWVhYFBQUXXS40NJTdu3fXUyrnc7f8fn5+REdH4+2tHfLVlRahfozr14ZZazJ4cGh74sIDq73u35fsxctTeGxEfB0mVK6u0ReQrKwsgoODiY2Nvei4zXl5eQQHB9djMudyp/zGGE6cOEFWVhZxcdopX116cGg75q3P5O/f7eWNu3pXa52d2adZsCWbh4a2c0ozYOW+Gv0hrIKCAsLCwi5aPFT9EhHCwsIuuVeoaq95sB/3D47jq22H2Zp5qlrr/N/ivYT6e/PAFXruo7Fr9AUE0OLhgvQzqT9TrmhHWKAPLy3a/VMHpVXak1tK0t5jPDS0nY73obSAKNXYBfl6MfXKeNYdyGX53kr7NQXKDi1+sreIFiF+TBwYW38BlcvSAtKAffHFF7z44otVzk9OTuaxxx6rx0Q/V1RUxJAhQygpKbEsgyoztm8bYsMC+Os3eym1Vb4XsmTXUfaftvH4lfH4eetY50oLSIP28ssv89BDD1U5PzExkddff70eE/2cj48PI0aM4KOPPrIsgyrj7enBk9d0Yu/RPD7dlPWL+cWlNv767R5aBAq3JURbkFC5okbfCqu8F77cya7sM5XOKy0txdOz5r+6LmsVwnM3dqlyfnp6OiNHjuTyyy9n7dq19OjRg8mTJ/Pcc8+Rk5PDnDlz6Nu3L+vXr+fxxx/n/Pnz+Pv78/7779OxY0deeeUVduzYwXvvvcf27dsZO3Ys69evJysrC19fX8LDwwH4/PPPefnll/H09CQ0NJQVK1aQlJTE3/72N7766iuef/55Dh48SFpaGgcPHuTxxx+/5N7Jhg0bmDp1KmfPnsXX15elS5fi7e3Ngw8+SHJyMl5eXrzyyisMGzaMnTt3MnnyZIqKirDZbHz66afEx8dz0003MW3aNMaNG1fjf1vlXNd1a0GP1k145bt93Ni9Ff4+//17n7M2g/3HzjK1ty9envq7U5XRvwQXkJqaytSpU9m2bRt79uzhww8/ZOXKlfztb3/jpZdeAqBTp06sWLGCzZs38+KLL/LMM88A8Pjjj5Oamsrnn3/O5MmTefvttwkICGDVqlX07v3fZpl//etfWbx4MVu3bmXhwoWV5tizZw+LFy9m/fr1vPDCCxQXF1eZuaioiDFjxvCPf/yDrVu38v333+Pv78+//vUvALZv387cuXOZOHEiBQUFvPXWW0ydOpUtW7aQnJxMdHTZr9iuXbuyYcMGp/w7qtoREZ65thNHzhQw/cf/Djp18mwRr36fwuXtw+kZoYeu1H/pHkg5F9tTqMvrKOLi4ujWrazn+i5dujBixAhEhG7dupGeng7A6dOnmThxIikpKYjIhS93Dw8PZsyYQffu3XnggQcYNGgQAIcPHyYiIuLCe/Tv359JkyZxxx13cMstt1Sa4/rrr8fX1xdfX1+aN2/O0aNHL3zRV7R3715atmxJnz59AAgJCQFg5cqVPProo0BZ0YuJiWHfvn0MGDCAP/3pT2RlZXHLLbcQH192AZqnpyc+Pj5udZ1KQ9avbRgju7TgzaT93J7YmhahfvxjaQp5BcX87obOHNmzyeqIyoXoHogL8PX1vfDYw8PjwnMPD48LJ5ifffZZhg0bxo4dO/jyyy9/do1ESkoKQUFBZGf/d2Rff3//ny3z2muv8cc//pHMzEx69uzJiRMnLprD09Pzoie3jTGVNrWtqhnoXXfdxcKFC/H39+eaa65h2bJlF+YVFhbi56cXpLmKZ67rTKnN8PK3e0jNyWP22gzG9m1DpxYhVkdTLkYLiJs4ffo0UVFRAMyYMeNn06dOncqKFSs4ceIE8+fPB6Bz586kpv63p9W0tDT69evHiy++SHh4OJmZmdV+7xEjRnDo0KGfTevUqRPZ2dkXDj/l5eVRUlLCkCFDmDNnDgD79u3j4MGDdOzYkbS0NNq2bctjjz3GqFGj2LZtGwAnTpwgIiJCuyxxIW3CArhvcByfbT7Erf9eQ4C3J7++qoPVsZQL0gLiJp566immTZvGoEGDKC0tvTD9iSee4KGHHqJDhw68++67PP300+Tk5DBkyBA2b958YY/g2WefpVu3bnTt2pUhQ4bQo0ePar2vzWYjNTWVZs2a/Wy6j48PH330EY8++ig9evTgqquuoqCggIceeojS0lK6devGmDFjmDFjBr6+vnz00Ud07dqVnj17smfPHiZMmADA8uXLue6665z0r6Sc5aFh7fHx9OD0+WIeGxFPWJDvpVdSjY8xptHcEhISTEW7du36xbTKnDlzplrLuZLHHnvMLFmyxBjjeP7t27ebJ554wpmxfubmm282e/bsqXRexc9m+fLldZajPrhb/uT0XPPSol2moLjkwjR324aK3D2/MdZsA5BsKvlO1ZPoDdgzzzzDunXravUaXbt25ZVXXnFSop8rKiripptuomPHjnXy+qp2EmKakhDT1OoYyoVZcghLRJqJyBIRSbHf/+KvVESGiciWcrcCEbnJPm+GiBwoN69n/W+F64uMjGTUqFFWx6iSj4/PhUNZSin3Y9U5kKeBpcaYeGCp/fnPGGOWG2N6GmN6AsOBc8B35RZ58qf5xpgttQljLtGBnKp/+pko5fqsKiCjgZn2xzOBmy6x/G3AN8YYx8bevAg/Pz9OnDihX1guxNjHA9GmvUq5NrHii1NEThljmpR7ftIYU+XBVhFZBrxijPnK/nwGMAAoxL4HY4wprGLdKcAUgMjIyIR58+ZVnE9gYOAluykxVVz34C7cLX9paSlnz579WWHPz88nKCjIwlS14+75wf23wd3zgzXbMGzYsI3GmMRfzKjszLozbsD3wI5KbqOBUxWWPXmR12kJHAO8K0wTwJeyPZjfVydTZa2wqsvdW2+4e35j3H8b3D2/Me6/De6e35hG0grLGHNlVfNE5KiItDTGHBaRlkDVgxDAHcDnxpgLHTMZYw7bHxaKyPvAb5wSWimlVLVZdQ5kITDR/ngisOAiy44F5pafYC86SNkxmZso27NRSilVj6wqIH8BrhKRFOAq+3NEJFFEpv+0kIjEAq2BHyqsP0dEtgPbgXDgj/WQWSmlVDmWnES3iogcAzIcXD0cOO7EOPXN3fOD+2+Du+cH998Gd88P1mxDjDEmouLERlVAakNEkk1lrRDchLvnB/ffBnfPD+6/De6eH1xrG7QzRaWUUg7RAqKUUsohWkCq7x2rA9SSu+cH998Gd88P7r8N7p4fXGgb9ByIUkoph+geiFJKKYdoAVFKKeUQLSCXICIjRWSviKSKyC+6nXd1IvKeiOSIiFterS8irUVkuYjsFpGdIjLV6kw1JSJ+IrJeRLbat+EFqzM5QkQ8RWSziHxldRZHiEi6iGy3jyGUbHWemhKRJiIyX0T22P8/DLA8k54DqZqIeAL7KLtaPgvYAIw1xuyyNFgNiMgQIB+YZYzpanWemrJ3W9PSGLNJRIKBjcBNbvYZCBBojMkXEW9gJTDVGLPW4mg1IiK/BhKBEGPMDVbnqSkRSQcSjTFueSGhiMwEfjTGTBcRHyDAGHPKyky6B3JxfYFUY0yaMaYImEdZb8JuwxizAsi1OoejjDGHjTGb7I/zgN1AlLWpasbeoWm+/am3/eZWv9xEJBq4Hph+qWWV84lICDAEeBfAGFNkdfEALSCXEgVklnuehZt9eTUk9r7RegG1G+jdAvbDP1so63l6iTHG3bbhNeApwGZ1kFowwHcistE+TpA7aUvZsBbv2w8jTheRQKtDaQG5uMpGYHKrX44NhYgEAZ8Cjxtjzlidp6aMMaWmbHjmaKCviLjN4UQRuQHIMcZstDpLLQ0yxvQGrgUeth/edRdeQG/g38aYXsBZKhkKvL5pAbm4LMp6A/5JNJBtUZZGy37e4FNgjjHmM6vz1Ib9sEMSMNLiKDUxCBhlP4cwDxguIh9YG6nmjDHZ9vsc4HPKDlG7iywgq9ye63zKCoqltIBc3AYgXkTi7Cet7qRsLBNVT+wnoN8FdhtjXrE6jyNEJEJEmtgf+wNXAnusTVV9xphpxphoY0wsZf8Hlhlj7rY4Vo2ISKC9EQb2Qz9X40bjCBljjgCZItLRPmkEYHlDkjobkbAhMMaUiMgjwGLAE3jPGLPT4lg1IiJzgaFAuIhkAc8ZY961NlWNDALGA9vt5xAAnjHGLLIwU021BGbaW/V5AB8bY9yyKawbiwQ+L/s9ghfwoTHmW2sj1dijlI2F5AOkAZMtzqPNeJVSSjlGD2EppZRyiBYQpZRSDtECopRSyiFaQJRSSjlEC4hSSimHaAFRSinlEC0gSimlHKIFRCkLiUgfEdlmHzMk0D5eiNv0k6UaN72QUCmLicgfAT/An7L+jv5scSSlqkULiFIWs3dNsQEoAAYaY0otjqRUteghLKWs1wwIAoIp2xNRyi3oHohSFhORhZR1kx5H2fC9j1gcSalq0d54lbKQiEwASowxH9p7610tIsONMcuszqbUpegeiFJKKYfoORCllFIO0QKilFLKIVpAlFJKOUQLiFJKKYdoAVFKKeUQLSBKKaUcogVEKaWUQ/4fCXOwK2bayM8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Erstellen der binaeren Maske\n", "maske = cos - sin[1:] < 0\n", "\n", "# Erstellen des Maximumsarrays\n", "mix = cos\n", "mix[maske] = sin[1:][maske]\n", "\n", "# Plotten der Daten\n", "plt.figure()\n", "plt.plot(wertebereich[1:], mix, label='max(sin, cos)')\n", "plt.grid()\n", "plt.xlabel('x')\n", "plt.ylabel('f(x)')\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }