{ "cells": [ { "cell_type": "markdown", "metadata": { "tags": [ "remove-cell" ] }, "source": [ "
\n", "
\n", "

Ingenieurinformatik – Übung

\n", " Lehrstuhl Computational Civil Engineering
\n", " Kontakt: Email senden | Individuelle Kontakte siehe Webseite des Lehrstuhls
\n", " Links: \n", " Vorlesungsskript | \n", " Webseite des Lehrstuhls\n", "
\n", "
\n", " \n", "
\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Modellierung" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lineare Regression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lineare Regression zu Fuß\n", "\n", "Gegeben sind zwei numpy Arrays. Die Daten Zeigen das Verhähltnis zwischen Lernzeit und Note für 10 Studentinnen.\n", "\n", "`Lernzeit = np.array([2,7,11,17,20,22,30,35,39,41])`\n", "\n", "`Note = np.array([5,5,4,3.7,3,3.7,2.7,2,2.3,1])`\n", "\n", "I. Plotten Sie die Daten auf ein Scatter Plot, wobei die Lernzeit auf der X-Achse und der Note auf der Y-Achse aufgetragen werden sollen.\n", "\n", "II. Eine lineare Regression sucht die Gerade, die den quadratischen Abstand aller Messwerte zu jener Gerade minimiert. Folgend sind die beiden Formeln für die Steigung $m$ und den y-Achsenabschnitt $b$ der gesuchten Gerade. $n$ ist die Anzahl der Datenpunkte.\n", "\n", "$$\n", "m &= \\frac{(n \\cdot \\sum xy) - (\\sum x \\cdot \\sum y)}{(n \\cdot \\sum x^2) - ((\\sum x)^2)}\\\\\n", "b &= \\frac{\\sum y - (m \\cdot \\sum x)}{n}\n", "$$\n", "\n", "Berechnen Sie mit den gegebenen Daten und mithilfe der beiden Formeln die Gerade.\n", "\n", "III. Speichern Sie die berechnete Gerade in einer Funktion und bennenen Sie diese. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Lösung I" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide-input", "hide-ourput" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXxklEQVR4nO3df5BdZZ3n8feH2KstoD1Kj0InGEedOGok0V7ExZpCdjSADGQzccCSUVhnMzMLJZZu3IlrqcOWFZ2Uv9mVzfArjI7oQIyRxYkUYKk7C26HBBLB7LAjFjRoGrD5oT1UEj/7xz0tN9fbP9L0uefenM+r6lbf85yn7/3mVOV++pzn3OeRbSIior6OqLqAiIioVoIgIqLmEgQRETWXIIiIqLkEQUREzT2r6gIO1THHHOPFixdXXUZERE/Zvn37w7YH2+3ruSBYvHgxIyMjVZcREdFTJP1kqn25NBQRUXMJgoiImksQRETUXIIgIqLmEgQRETVX6l1Dku4DngAOAPttD7fsF/A54Azgl8D5tu+Y7zq27Bhlw7Y9PDg+wXED/axdsYSVy4fm+23mpJtri4h66MTto2+2/fAU+04HXlE83gB8sfg5b7bsGGXd5l1M7DsAwOj4BOs27wKo/AO3m2uLiPqo+tLQ2cA1brgNGJB07Hy+wYZte379QTtpYt8BNmzbM59vMyfdXFtE1EfZQWDg25K2S1rTZv8QcH/T9gNF20EkrZE0ImlkbGzskAp4cHzikNo7qZtri4j6KDsI3mT7dTQuAV0o6ffn8iK2N9oetj08ONj2G9JTOm6g/5DaO6mba4uI+ig1CGyPFj/3Al8HTmzpMgosatpeWLTNm7UrltDft+Cgtv6+BaxdsWQ+32ZOurm2iKiP0oJA0pGSjp58DrwV2N3SbSvwLjWcBDxm+6H5rGPl8iHWr1rK0EA/AoYG+lm/amlXDMZ2c20RUR8qa81iSb9D4ywAGncn/Z3tj0v6cwDblxW3j14KnEbj9tELbE87o9zw8LAz6VxExKGRtL31Fv5Jpd0+avufgRPatF/W9NzAhWXVEBERM6v69tGIiKhYgiAiouYSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzCYKIiJorPQgkLZC0Q9INbfadL2lM0s7i8adl1xMREQcrbYWyJhcD9wDPm2L/V21f1IE6IiKijVLPCCQtBN4GXF7m+0RExNyVfWnos8AHgV9N0+ePJN0l6TpJi9p1kLRG0oikkbGxsTLqjIiordKCQNKZwF7b26fp9k1gse3XAjcBm9p1sr3R9rDt4cHBwRKqjYiorzLPCE4GzpJ0H3AtcKqkLzV3sP2I7aeKzcuB15dYT0REtFFaENheZ3uh7cXAucAtts9r7iPp2KbNs2gMKkdERAd14q6hg0i6BBixvRV4r6SzgP3Ao8D5na4nIqLuZLvqGg7J8PCwR0ZGqi4jIqKnSNpue7jdvnyzOCKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRcwmCiIiaSxBERNRcgiAiouYSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImksQRETUXOkrlElaAIwAo7bPbNn3bOAaGmsVPwKcY/u+smuKp23ZMcqGbXt4cHyC4wb6WbtiCSuXD1VdVkR0UCfOCC5m6rWI3wP83PbLgc8An+xAPVHYsmOUdZt3MTo+gYHR8QnWbd7Flh2jVZcWER1UahBIWgi8Dbh8ii5nA5uK59cB/1aSyqwpnrZh2x4m9h04qG1i3wE2bNtTUUURUYWyzwg+C3wQ+NUU+4eA+wFs7wceA17Y2knSGkkjkkbGxsZKKrV+HhyfOKT2iDg8lRYEks4E9tre/kxfy/ZG28O2hwcHB+ehugA4bqD/kNoj4vBU5hnBycBZku4DrgVOlfSllj6jwCIASc8Cnk9j0Dg6YO2KJfT3LTiorb9vAWtXLKmoooioQmlBYHud7YW2FwPnArfYPq+l21bg3cXz1UUfl1VTHGzl8iHWr1rK0EA/AoYG+lm/amnuGoqomdJvH20l6RJgxPZW4ArgbyXdCzxKIzCig1YuH8oHf0TNdSQIbH8H+E7x/CNN7f8CvL0TNURERHv5ZnFERM0lCCIiai5BEBFRcwmCiIiaSxBERNRcx28fjZgP3T5rarfXF9EsQRA9Z3LW1MkJ8yZnTQW64sO22+uLaJVLQ9Fzun3W1G6vL6JVgiB6TrfPmtrt9UW0ShBEz+n2WVO7vb6IVgmC6DndPmtqt9cX0SqDxdFzJgdcu/WunG6vL6KVem3W5+HhYY+MjFRdRkRET5G03fZwu325NBQRUXMJgoiImitzzeLnSPqBpDsl/VDSX7Xpc76kMUk7i8efllVPRES0V+Zg8VPAqbaflNQHfF/St2zf1tLvq7YvKrGOiIiYRmlBUKw9/GSx2Vc8emtkOiKiBkodI5C0QNJOYC9wk+3b23T7I0l3SbpO0qIpXmeNpBFJI2NjY2WWHBFRO6UGge0DtpcBC4ETJb2mpcs3gcW2XwvcBGya4nU22h62PTw4OFhmyRERtdORu4ZsjwO3Aqe1tD9i+6li83Lg9Z2oJyIinlbmXUODkgaK5/3AW4AftfQ5tmnzLOCesuqJiIj2yrxr6Fhgk6QFNALna7ZvkHQJMGJ7K/BeSWcB+4FHgfNLrCciItrIFBMRETWQKSYiImJKCYKIiJpLEERE1FyCICKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRcwmCiIiaSxBERNTcrIJA0u9KulnS7mL7tZI+XG5pERHRCbM9I/gbYB2wD8D2XcC5ZRUVERGdM9sgeK7tH7S07Z/vYiIiovNmGwQPS3oZxeLzklYDD5VWVUREdMxsF6a5ENgIvFLSKPBj4J2lVRURER0z2yCw7T+QdCRwhO0nJL10ul+Q9Bzgu8Czi/e5zvZHW/o8G7iGxlrFjwDn2L7vEP8NEfNuy45RNmzbw4PjExw30M/aFUtYuXyo6rIiSjHbS0PXA9j+he0nirbrZvidp4BTbZ8ALANOk3RSS5/3AD+3/XLgM8AnZ1lPRGm27Bhl3eZdjI5PYGB0fIJ1m3exZcdo1aVFlGLaMwJJrwReDTxf0qqmXc8DnjPd77qxBuaTxWZf8WhdF/Ns4GPF8+uASyXJvbZ+ZhxWNmzbw8S+Awe1Tew7wIZte3JWEIelmS4NLQHOBAaAP2xqfwL4DzO9eLFw/Xbg5cB/s317S5ch4H4A2/slPQa8EHi45XXWAGsAjj/++JneNuIZeXB84pDaI3rdtEFg+xvANyS90fb/PtQXt30AWCZpAPi6pNfY3j2H19lIY7Ca4eHhnC1EqY4b6Ge0zYf+cQP9FVQTUb7ZjhHcL+nrkvYWj+slLZztm9geB24FTmvZNQosApD0LOD5NAaNIyqzdsUS+vsWHNTW37eAtSuWVFRRRLlmGwRXAVuB44rHN4u2KUkaLM4EkNQPvAX4UUu3rcC7i+ergVsyPhBVW7l8iPWrljI00I+AoYF+1q9amvGBOGzN9vbR37bd/MF/taT3zfA7xwKbinGCI4Cv2b5B0iXAiO2twBXA30q6F3iUTFsRXWLl8qF88EdtzDYIHpZ0HvCVYvsdzHAJp5iPaHmb9o80Pf8X4O2zrCEiIkow20tD/x74Y+CnNKaWWA1cUFZRERHRObM6I7D9E+CskmuJiIgKzPSFso9Ms9u2/+s81xMRER020xnBL9q0HUljaogXAgmCiIgeN9MXyj41+VzS0cDFNMYGrgU+NdXvRURE75hxjEDSC4D305h2ehPwOts/L7uwiIjojJnGCDYAq2hM77DU9pPT9Y+Iesv03b1ppjOCD9CYTvrDwH+RNNkuGoPFzyuxtojoIZPTd0/O3Do5fTeQMOhy036PwPYRtvttH237eU2PoxMCEdFsuum7o7vN9gtlERHTyvTdvStBEBHzYqppujN9d/dLEETEvMj03b1rtpPORURMa3JAOHcN9Z4EQUTMm0zf3ZtyaSgiouYSBBERNVdaEEhaJOlWSXdL+qGki9v0OUXSY5J2Fo/pZjuNiIgSlDlGsB/4gO07ignrtku6yfbdLf2+Z/vMEuuIiIhplHZGYPsh23cUz58A7gEyihQR0WU6MkYgaTGN9Ytvb7P7jZLulPQtSa+e4vfXSBqRNDI2NlZmqRERtVN6EEg6CrgeeJ/tx1t23wG8xPYJwBeALe1ew/ZG28O2hwcHB0utNyKibkoNAkl9NELgy7Y3t+63/fjk1Na2bwT6JB1TZk0REXGwMu8aEnAFcI/tT0/R58VFPySdWNTzSFk1RUTEbyrzrqGTgT8BdknaWbR9CDgewPZlwGrgLyTtByaAc227xJoiIqJFaUFg+/s0FrCZrs+lwKVl1RARETPLN4sjImouk85FRJSs29dyThBERJSoF9ZyzqWhiIgS9cJazgmCiIgS9cJazgmCiIgS9cJazgmCiIgS9cJazhksjogoUS+s5ZwgiIgoWbev5ZxLQxERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImivt9lFJi4BrgBcBBjba/lxLHwGfA84Afgmcb/uOsmqKiPrq9hlAq1Tm9wj2Ax+wfYeko4Htkm6yfXdTn9OBVxSPNwBfLH5GRMybXpgBtEqlXRqy/dDkX/e2nwDuAVqP+NnANW64DRiQdGxZNUVEPfXCDKBV6sgYgaTFwHLg9pZdQ8D9TdsP8JthgaQ1kkYkjYyNjZVWZ0QcnnphBtAqlR4Eko4CrgfeZ/vxubyG7Y22h20PDw4Ozm+BEXHY64UZQKtUahBI6qMRAl+2vblNl1FgUdP2wqItImLe9MIMoFUqLQiKO4KuAO6x/ekpum0F3qWGk4DHbD9UVk0RUU8rlw+xftVShgb6ETA00M/6VUszUFwo866hk4E/AXZJ2lm0fQg4HsD2ZcCNNG4dvZfG7aMXlFhPRNRYt88AWqXSgsD29wHN0MfAhWXVEBERM8s3iyMiai5BEBFRcwmCiIiaSxBERNRcgiAiouYSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzZW5VOWVkvZK2j3F/lMkPSZpZ/H4SFm1RETE1MpcqvJq4FLgmmn6fM/2mSXWEBERMyjtjMD2d4FHy3r9iIiYH1WPEbxR0p2SviXp1VN1krRG0oikkbGxsU7WFxFx2KsyCO4AXmL7BOALwJapOtreaHvY9vDg4GCn6ouIqIXKgsD247afLJ7fCPRJOqaqeiIi6qqyIJD0Ykkqnp9Y1PJIVfVERNRVaXcNSfoKcApwjKQHgI8CfQC2LwNWA38haT8wAZxr22XVExER7ZUWBLbfMcP+S2ncXhoRERWq+q6hiIioWIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzCYKIiJpLEERE1FyCICKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRcwmCiIiaKy0IJF0paa+k3VPsl6TPS7pX0l2SXldWLRERvWzLjlFO/sQtvPQv/ycnf+IWtuwYndfXL/OM4GrgtGn2nw68onisAb5YYi0RET1py45R1m3exej4BAZGxydYt3nXvIZBaUFg+7vAo9N0ORu4xg23AQOSji2rnoiIXrRh2x4m9h04qG1i3wE2bNszb+9R5RjBEHB/0/YDRdtvkLRG0oikkbGxsY4UFxHRDR4cnzik9rnoicFi2xttD9seHhwcrLqciIiOOW6g/5Da56LKIBgFFjVtLyzaIiKisHbFEvr7FhzU1t+3gLUrlszbe1QZBFuBdxV3D50EPGb7oQrriYjoOiuXD7F+1VKGBvoRMDTQz/pVS1m5vO2V9Dl51ry9UgtJXwFOAY6R9ADwUaAPwPZlwI3AGcC9wC+BC8qqJSKil61cPjSvH/ytSgsC2++YYb+BC8t6/4iImJ2eGCyOiIjyJAgiImouQRARUXMJgoiImlNjzLZ3SBoDflJ1HVM4Bni46iKmkNrmJrXNTWqbmzJre4nttt/I7bkg6GaSRmwPV11HO6ltblLb3KS2uamqtlwaioiouQRBRETNJQjm18aqC5hGapub1DY3qW1uKqktYwQRETWXM4KIiJpLEERE1FyCYB5Iuk/SLkk7JY10QT1XStoraXdT2wsk3STpn4qfv9VFtX1M0mhx/HZKOqOCuhZJulXS3ZJ+KOnior3y4zZNbd1w3J4j6QeS7ixq+6ui/aWSbpd0r6SvSvpXXVTb1ZJ+3HTclnW6tqYaF0jaIemGYruS45YgmD9vtr2sS+5Pvho4raXtL4Gbbb8CuLnYrsLV/GZtAJ8pjt8y2zd2uCaA/cAHbL8KOAm4UNKr6I7jNlVtUP1xewo41fYJwDLgtGJ9kU8Wtb0c+Dnwni6qDWBt03HbWUFtky4G7mnaruS4JQgOQ7a/Czza0nw2sKl4vglY2cmaJk1RW+VsP2T7juL5EzT+cw7RBcdtmtoq54Yni82+4mHgVOC6or2q4zZVbV1B0kLgbcDlxbao6LglCOaHgW9L2i5pTdXFTOFFTSvA/RR4UZXFtHGRpLuKS0eVXLaaJGkxsBy4nS47bi21QRcct+Lyxk5gL3AT8P+Acdv7iy4PUFFwtdZme/K4fbw4bp+R9OwqagM+C3wQ+FWx/UIqOm4JgvnxJtuvA06ncdr++1UXNJ1iUaCu+csI+CLwMhqn7w8Bn6qqEElHAdcD77P9ePO+qo9bm9q64rjZPmB7GY11x08EXllFHe201ibpNcA6GjX+a+AFwH/udF2SzgT22t7e6fduJ0EwD2yPFj/3Al+n8Z+h2/xM0rEAxc+9Fdfza7Z/VvyH/RXwN1R0/CT10fig/bLtzUVzVxy3drV1y3GbZHscuBV4IzAgaXIFxIXAaFV1wUG1nVZcarPtp4CrqOa4nQycJek+4Foal4Q+R0XHLUHwDEk6UtLRk8+BtwK7p/+tSmwF3l08fzfwjQprOcjkB23h31HB8Suuz14B3GP70027Kj9uU9XWJcdtUNJA8bwfeAuNMYxbgdVFt6qOW7vaftQU7KJxDb7jx832OtsLbS8GzgVusf1OKjpu+WbxMyTpd2icBUBjDei/s/3xCktC0leAU2hMafsz4KPAFuBrwPE0pvH+Y9sdH7SdorZTaFzeMHAf8GdN1+U7VdebgO8Bu3j6mu2HaFyLr/S4TVPbO6j+uL2WxqDmAhp/WH7N9iXF/4traVx62QGcV/wF3g213QIMAgJ2An/eNKjccZJOAf6T7TOrOm4JgoiImsuloYiImksQRETUXIIgIqLmEgQRETWXIIiIqLkEQRy2JFV2S2BTDTdKGige/3GGvpdJOrmlbYmk7xSzZN4jaWPRvqyK2Ubj8JQgiGjR9M3OZ8z2GcW3WgeAaYOAxsyit7W0fZ6nZxj9PeALRfsyIEEQ8yJBELUi6WWS/qGYIPB7kl5ZtF9d/EV+O/DXxfbnJf2jpH+WtLrod0nTPPajkq4q2s8r5r7fKel/SFpQtN8n6RjgE8DLiv0b2tT1e8D/tX2gZdexNCYfA8D2rmKO+kuAc4rXO2f+j1TUSb5QFoctSU/aPqql7WYa3yT9J0lvANbbPlXS1TS+7Xy27QPF9pHAOTQmKNtazBE/+ToDNL7tez7wS+CvgVW290n678Bttq8p5pIZBo4CbrD9milqfT+NmSevbGm/gMYslf8IfBu4yva4pPOBYdsXzfX4REyat1PgiG5XzN75b4C/b0wzA0DzFMR/3/IX+ZZiQre7Jf16+ulijpovAZ+2vV3SRcDrgf9TvG4/hz453QrggtZG21dJ2kZjMZ+zgT+TdMIhvnbEtBIEUSdH0Pire9kU+3/Rst08x4uann8MeMD2VU37NtleN5eiJD0XGLD9YLv9RfuVwJVqLPHZ9qwiYq4yRhC1Uczh/2NJb4fGX/aH+te1pD8E/gB4b1PzzcBqSb9d9HmBpJe0/OoTwNFTvOybacw62e79TiumoEbSi2ksXjI6w+tFHJIEQRzOnivpgabH+4F3Au+RdCfwQxqXWw7F+2msGjU5MHyJ7buBD9NYpe4uGqt0NU8Rje1HgP8laXebweLTgX+Y4v3eCuwu6t1GY63dn9IIjldlsDjmQwaLIyom6Q7gDbb3VV1L1FOCICKi5nJpKCKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRc/8fvVuqOPqysC4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "Lernzeit = np.array([2,7,11,17,20,22,30,35,39,41])\n", "Note = np.array([5,5,4,3.7,3,3.7,2.7,2,2.3,1])\n", "\n", "plt.scatter(Lernzeit,Note)\n", "plt.xlabel('Lernzeit / St')\n", "plt.ylabel('Note')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Lösung II" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "tags": [ "hide-input", "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.09101666264187402\n", "5.278773243177978\n" ] } ], "source": [ "#Steigung\n", "\n", "x_summe = np.sum(Lernzeit)\n", "y_summe = np.sum(Note)\n", "xy_summe = np.sum(Lernzeit*Note)\n", "xx_summe = np.sum(Lernzeit**2)\n", "\n", "m = ((10*xy_summe)-(x_summe*y_summe))/((10*xx_summe)-(x_summe**2))\n", "print(m)\n", "\n", "#Achsenabschnitt\n", "\n", "b = (y_summe-m*x_summe)/10\n", "print(b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Lösung III" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# y = m*x + b\n", "\n", "def zufuss(Stunden):\n", " return -0.091*Stunden + 5.278" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lineare Regression mit `np.polyfit()`\n", "\n", "Berechnen Sie die Koeffizienten $m$ und $b$ mithilfe `np.polyfit()`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Lösung" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "hide-input", "hide-output" ] }, "outputs": [ { "data": { "text/plain": [ "array([-0.09101666, 5.27877324])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "polyline = np.polyfit(Lernzeit,Note,1)\n", "polyline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Vergleichen der Lösungswege\n", "\n", "Plotten Sie die Datenpunkte, und beide berechnete Linien mit matplotlib." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Lösung" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "hide-input", "hide-output" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvLElEQVR4nO3deVyU5f7/8dc1gIKC4AIuoIAbKCqLiJVL2uJSllpmqWVulZUd/VV0olNZttlXO2qrYrm1WFZux1MuxzI1TUDBfVdUQEVRXFERrt8fMxIqu8zcw/B5Ph48hHtm7vvdXb29uWeu61Jaa4QQQjgek9EBhBBCWIcUvBBCOCgpeCGEcFBS8EII4aCk4IUQwkE5Gx0gvzp16uiAgACjYwghRIWxcePGk1pr74Ies6uCDwgIICEhwegYQghRYSilDhX2mNyiEUIIByUFL4QQDkoKXgghHJRd3YMXQtiP7OxsUlJSuHTpktFRBODq6oqfnx8uLi4lfo0UvBCiQCkpKXh4eBAQEIBSyug4lZrWmoyMDFJSUggMDCzx6+QWjRCiQJcuXaJ27dpS7nZAKUXt2rVL/duUFLwQolBS7vajLP8uHKLg9TvjuPDnd0bHEEIIu1LxCz4zkxObJhN/eRC7pgZyed9fRicSQlRQAQEBnDx5ssjnREdHExISQnR0NFOnTmXOnDkAzJo1i7S0NFvELLGK/yarlxe1Zm6l4eL+pDRZR/q+22n0ewcaPjwPp1oNjE4nhHAwsbGxnDp1Cicnp+u2z5o1i1atWtGggf30jlULXimVDJwDcoCrWuvI8j7GwsRUJizbTVrma3RK3s8LdSeQHPQnp+b5E8EnMGIEOBvz99jf2bJo4OVGdPcg+oT7GpJFiIooOTmZnj170rFjR9atW4evry+LFi2iZ8+ehIaG8scff3D16lVmzJhBVFTUda9dtWoVb775Jh4eHuzbt4+uXbvy+eefYzKZmDt3Lu+//z5aa+6//34+/PDD61775ptvUqtWLcaMGQPAv/71L3x8fFi5ciXnz5+nbdu2xMTEsHPnTtzd3fOmWRk0aBBubm6sX78eNzc3W52mQtmi+bpqrYv+naeMFiamEjN/K1nZOQCsvtiE+JTpfF5rGwFxs2Hms+R8MYVz/zccr+4vWyNCibOlZmYRM38rgJS8qHjGjIGkpPLdZ1gYTJ5c7NP27t3L3LlzmT59Ov379+fnn38G4OLFiyQlJbF69WqGDRvGtm3bbnptXFwcO3bswN/fnx49ejB//nzuuOMO/vnPf7Jx40Zq1qxJt27dWLhwIX369Ml73bBhw3jooYcYM2YMubm5fP/998TFxTF69Gjc3d1JspyLt956C4B+/frx6aefMnHiRCIjy/06tswq9D34Cct25xXoNVnZOby+P4JaX22B+fM5etsJkqpGsy22Lhc3/9fwbBOW7bZZBiEcQWBgIGFhYQC0bduW5ORkAAYMGABA586dOXv2LJmZmTe9NioqisaNG+Pk5MSAAQNYu3Yt8fHxdOnSBW9vb5ydnRk0aBCrV6++7nUBAQHUrl2bxMREli9fTnh4OLVr17bmP6ZVWPsKXgPLlVIamKa1jr3xCUqpp4GnARo1alSqnadlZhW+XSno25f6Pe4iZ8FADjf8hfgTvfCd1hr/B+bh0iC41P8w5ZZNiIqmBFfa1lK1atW8752cnMjKMv8/dOPHBgv6GGFJnlOYESNGMGvWLI4dO8awYcNKE9luWPsKvqPWOgLoCTyvlOp84xO01rFa60itdaS3d4FTGheqgVfB97jyb3dy88R/4H+JCt9OvSOtSGm6lZ1zW8H48WDFIdglySaEKLsffvgBgLVr1+Lp6Ymnp+dNz4mLi+PgwYPk5ubyww8/0LFjR6Kiovjjjz84efIkOTk5zJ07lzvvvPOm1/bt25elS5cSHx9P9+7di83j4eHBuXPnbv0frBxZteC11qmWP9OBBUBU0a8onejuQbi5XP9OtpuLE9Hdg256btV6LQkaupXIuotovKMjxMRwpV0zTi54GZ2bW56xSp1NCFF6rq6uhIeHM3LkSL766isAEhISGDFiRN5z2rVrx6hRo2jRogWBgYH07duX+vXrM378eLp27UpoaCht27ald+/eN+2/SpUqdO3alf79+9/0iZmCDBkyhJEjRxIWFpb3W4bRlNbaOjtWqjpg0lqfs3y/AhintV5a2GsiIyN1aRf8KPMnVX77jYMrBnKo+3G89tegSfAUPDoMKdWxrZZNCDuwc+dOWrRoYXSMAnXp0qXYNzRXrVrFxIkTWbJkSZmOkZubS0REBD/++CPNmjUra9RyVdC/E6XUxsI+oWjNe/B1gQWWe17OwHdFlXtZ9Qn3LVtp3nUX/p2SqbLoKZK9v2Xj5aHUm/o2gfd8T9Wm7Y3NJoQw1I4dO+jVqxd9+/a1m3IvC6tdwZdFWa7gy0N2ZgqHF/cnpf56fP4w0eJqNLz2GtSoYfMsQtgLe76Cr6xKewVfoT8mWV5cvPxoMngdUU3WEniyD3z4IRe6BHBs7hB09hWj4wkhRJlIwefj1rgDrlN/hvh4jvZzY1f92Wyc60nm8glGRxNCiFKTgi9IZCRNXj1Mi/Ojya5+laQqr7BtWj0ubv7F6GRCCFFiUvCFUCYn6vaaTFTPEwSm9uR0o+Mc++x+ePZZSE83Op4QQhRLCr4YTtW88B/0C1Fh22jk/gxMn86pfgGkzHqQ3Iv2NahBCEezYMECwsLCrvsymUz8+uuvhb5mzZo1hISEFPt59Pj4eCIjIwkLC+PRRx8lJyen0OdWVFLwJVS1fgjO/54K27Zx8iEf9gX8h/hFtTi5MNoqA6WEEObRpElJSXlfzz33HJ06dSpyZOm3335LTEwMSUlJRc7o+PLLL/Phhx+SlJREnTp1+OUXx7sFKwVfWsHBNBt9kNY576FMTmzzmsjmmTU5t26O0cmEcGh79uxh3LhxfP3116xevZpevXrlPTZq1ChmzZrFl19+ybx583jjjTcYNGgQq1atKvB5AIcPHyY0NJSYmBiys7Np3ry5rf+RrK7iL/hhAKUUte9+jZrZL3J00QgO+nzHufefxMPjV/jgAwgIMDqiEOUuMbHLTdt8fPrj6/scOTkX2bLlvpser1dvCPXrD+HKlZNs397vusfCw1eV+NjZ2dkMHDiQjz76iEaNGnHgwIECnzdixAjWrl1Lr1696NevH6tWFX6Ma2OAvvjiC9LS0qhWrVqJ81QUcgV/C0wurvj2+4b2nQ5TP+JfsHAhR//RjOQvO5Fz+qjR8YRwGG+88QYhISE8+uij5b7vwYMH061bN1JSUsp930aTK/hy4OLlB+Pehaee4dySu0lrupa03/xofGUwdftNQ7lUMTqiELesqCtuJ6dqRT5epUqdUl2x57dq1Sp+/vlnNm3alLfN2dmZ3HzvfV0qZGbYkjzv448/Zt68eXTr1o0dO3aUKaO9kiv48tSwIc2f3UOYayxVs6qxq/4sNs715OzyKUYnE6JCOn36NEOHDmXOnDl4eHjkbff392fHjh1cvnyZzMxMVq5cWeDri3ve1atXAejduzfHjx/nyhXHGrkuV/BW4HXbU0REDSP9vy9yoPpnXI0ZA5OWwsSJEBJidDwhKoypU6eSnp7Os88+e932mJgY+vfvT6tWrQgMDCQ8PLzA1zds2LDI5/33v/9lypQp5Obm8tprr1GlimP9ti2TjVlZbtZZTJ9Ph3fe4cAjZ8iNbIP/gz/iUt/x3rEXjkUmG7M/MtmYnTG51YCXXkLv3cvV21qT0mwLG+KDSZndWwZKCSGsSgreRpS3N82HbyHSewHup2uzz38x8YtqcWb+u2BHv0UJIRyHFLyNubfuQ+jgdFrnvItJO+P8/96ADh3Qf60zOpoQwsFIwRvAPFDqX0T2P0f1N7+EAwfYsbQDu6Y24fL+OKPjCSEchBS8gZSzMwwfjt6zG9fA2zje5AAb9rQn+cvO5GQeMzqeEKKCk4K3A6qGJ02eXE9Uk9XUPtaI5KZr2LDSl7NzYsDyOV0hhCgtKXg74ta4EyFDDxHmGkv10zVwfWE8hIeTs3yx0dGEMISTkxNhYWGEhIQQGhrKRx99dN3I1IIkJyfz3Xff2Shh8QICAjh58uR12zIzM/n888+tfmwpeDvkddtThA4/RZUZP6GzLpB4sLd5Rakthc+BLYQjcnNzIykpie3bt7NixQp+/fVX3n777SJfY28FXxAp+MpOKXj4YfTWLXi79+BUo+PEH7+PfdNCyT621+h0QtxkYWIqHcb/RuCr/6XD+N9YmJharvv38fEhNjaWTz/9FK01ycnJdOrUiYiICCIiIli3zvxJtFdffZU1a9YQFhbGpEmTyMnJITo6mnbt2tGmTRumTZsGmOe46dKlC/369SM4OJhBgwblzTAZEBDAK6+8QuvWrYmKimLfvn0ADBkyhJ9++ikvk7u7e7H7uiYrK4uePXsyffp0Xn31Vfbv309YWBjR0dEATJgwIS/j2LFjy+WcyVQFds7k5o7/oF+pd3Q7yUv7k9JsC8figgg98g88RnwIVasaHVEIFiamEjN/K1nZ5lWRUjOziJm/FYA+4b7ldpzGjRuTk5NDeno6Pj4+rFixAldXV/bu3cuAAQNISEhg/PjxTJw4kSVLlgAQGxuLp6cn8fHxXL58mQ4dOtCtWzcAEhMT2b59Ow0aNKBDhw78+eefdOzYEQBPT0+2bt3KnDlzGDNmTN7+ClPUvs6fP89jjz3G4MGDGTx4MPfeey/btm0jKSkJgOXLl7N3717i4uLQWvPggw+yevVqOnfufEvnS67gK4iq9UMIGrqdyDrzqXPYl+pjpkCLFlz+eZqsKCUMN2HZ7rxyvyYrO4cJy3Zb7ZjZ2dk89dRTtG7dmkceeaTQmSCXL1/OnDlzCAsLo3379mRkZLB3r/m34KioKPz8/DCZTISFhZGcnJz3ugEDBuT9uX79+mLzFLWv3r17M3ToUAYPHlxoxuXLlxMeHk5ERAS7du3Ky3grpOArGPc2fQkedQTTL8vJqVmNjbkj2TyzFuf++sboaKISS8sseO3TwraX1YEDB3BycsLHx4dJkyZRt25dNm/eTEJCQqEzQWqt+eSTT/KW/Tt48GDeFXzVfL8BOzk55c0uCebxKjd+n3/64dzc3OuOWdS+OnTowNKlS2+6bZM/47VlBpOSkti3bx/Dhw8v8XkpjBR8RXXvvai/EvBnIOe9z7Lx4hPsmtaEywfijU4mKqEGXgWvfVrY9rI4ceIEI0eOZNSoUSilOHPmDPXr18dkMvH111/nLZrt4eHBuXN/z/PUvXt3vvjiC7KzswHz0n8XLlwo9ng//PBD3p+33347YL43v3HjRgAWL16ct8/ijBs3jpo1a/L8888XmnHGjBmcP38egNTUVNLT00u076JIwVdgJhdXfB/5lvadDtHw8G0cb3yADXuiuPjeSDgnE5kJ24nuHoSbi9N129xcnIjuHnRL+83Kysr7mOQ999xDt27d8t6AfO6555g9ezahoaHs2rWL6tWrA9CmTRucnJwIDQ1l0qRJjBgxgpYtWxIREUGrVq145plnrru6Lszp06dp06YNU6ZMYdKkSQA89dRT/PHHH4SGhrJ+/fq8Y5bElClTyMrK4pVXXqF27dp06NCBVq1aER0dTbdu3Rg4cCC33347rVu3pl+/ftf9BVBWMl2wA8nav4Zji54n4KWtqLp1Of/hM1Qf9DrK2cXoaKICKu10wQsTU5mwbDdpmVk08HIjuntQub7BaksBAQEkJCRQp04do6Ncp7TTBcunaByIW5NOBL64BTrGcfnNUWzyGUe17ybQtME7eN3zktHxhIPrE+5bYQvdUcktGkcUFUWVX9bTPHsU2e5XSHJ+mW2x9bi4danRyYSoEJKTk+3u6r0spOAdlDI5Ue/BT4jqnk5gSndONTxO/NGeXH55KJw4YXQ8UUHY0y3cyq4s/y6k4B2cU/Va+D++lPahW2m+uStVJ38NzZpxKvZpcrPOGx1P2DFXV1cyMjKk5O2A1pqMjAxcXV1L9Tp5k7Wy2bGDi+8/S9yw1bgdd6FJ9Rep3et9lEn+rhfXy87OJiUlhUuXLhkdRWD+C9fPzw8Xl+s/NFHUm6xS8JWQ1pqM/73D/lPvkVX3Cl77PWkS8iketz1udDQhRCnJotviOkop6tz7Ju0eOkPT9Mc473OWpFNPcHXoo3D4sNHxhBDlRAq+EjO5uOLXfy7tOyYTsvMxnOcuQgc15+hnD5Bz5rjR8YQQt0gKXuBSsxG1XpoLu3dzduSd7A5ZQtz/GnDs+xHoqyUbii2EsD9S8OJv/v54TlpGWJWpVMlyY1e9r9j0nSeZ/5tkdDIhRBlIwYubeN3xDBEDzxB8dhRX3K+w4/SL5Pa+H3btMjqaEKIUrF7wSiknpVSiUqro2fJFubrV1XXyD5Rqc2w0plVryQ0LIfmz28g+vt9KqYUQ5ckWV/CjgZ02OI6wuLa6TmpmFpq/V9cpyxJqTtVr4f7CZNi7l8yY+0husYENG5qRMqevDJQSws5ZteCVUn7A/cCX1jyOuJ5VVtfx8aHW2P/QtvZPuJ+uxb5GC4lfWIuTi2NkRSkh7JS1r+AnA68AhTaAUupppVSCUirhhMyRUi6subqOR+jDhA4+Qavst8CkSD46Hrp0hnhZaEQIe2O1gldK9QLStdYbi3qe1jpWax2ptY709va2VpxKxdqr65gHSo2lXd9MWrl8gNq9lyv3RLHn8yAuH5SRyELYC2tewXcAHlRKJQPfA3cppWThUBuw1uo6NzJVccN12Kuwdy9n3nqYo832sGFXO5JndCXnzK0vNyaEuDU2mYtGKdUFeFlr3auo58lcNOXHiNV1Lu77gwNrHudkYApVM0wE5gyj3sNTwcmp+BcLIcpEVnSqhIxYXada0ztp1fQImeu+YF9WNCf3f0m9tvHw0Udw9902zSKEsNFAJ631quKu3oXj8LrjWdoOPENwixmQmcmFofewfVoDsravMDqaEJWKjGQVVqFMTjj3Hwq7dnHhjYFk+B8lLq0b+2IjyE4/YHQ8ISoFKXhhXa6u+Dz1Le1bb6bukWBSmiay4a+mpM15BK5cMTqdEA5NCl7YRFXfNgQP22kZKFWTrHU/QcuWMH++DJQSwkqk4IVNmQdKnSSwz3/A1ZVT7z/M5pm1OR831+hoQjgcKXhhc0opTD16QVISV18cwXmfMyScH8iu2GZcTi5yXJwQohSk4IVxnJ3xGTid9h0O4ne4HccD97FhZyQpsT3hvExkJsStkoIXhnOp5U/TIXG0C/idWkf9UL8s5WSDAF65/wU6v7+sTLNgWsutTsMshC1JwQu7Ua1ZF/aF/8XLNT/isEcdxqhPeb9ub9Z9M84uirQ8p2EWwhak4IVdmbBsN+vrBvHQ4xOZHdQb7ZnNfQ/E4vV7G8MHSlllGmYhrEgKXtiVvCmNlWKay1M8F/8NR34Pw9TyFHFp3TjycWfIyDA2Wwm3C2E0KXhhV26c0vicqsEbl9/l07hY6h4JptrctdC0KTmTPyT30gVDsxW3XQijScELu1LYVMcDH7iP4GE7qT19C7Rvz6Htr5KwoCYZ//mXzQZK2WoaZiHKixS8sCt9wn354KHW+Hq5oQBfLzc+eKj13zNjtmoFS5fi+cjbaJNiq8f7bJlZm/Nx3xufTQg7Y5P54EtK5oMXpZF75SJpC4aQXP0nrlbTNI1rh98TC8BXCldUHkXNBy9X8KLCMlWpht+j82h/+wH8DkfiNTMRmjXjynuvkHPupNHxhDCcFLyo8FxqB9B0SDzuS/fAgw+y79IE4pbV5fiPz6BzrhodTwjDSMELxxEYCN9/T4Men+FyyZWd3rFs+taTzN8/NjqZEIaQghcOx6vDc7QdeJbgzGe57HGZJDWatNfDYM8eo6MJYVNS8MIhKZMT9fp8Tvt7jxFw5F7qzN4HISFkvTaE7BMHjY4nhE1IwQuH5uReh4AnllMlYT8MH87O+rPZsL4Jqd/0s/lAKSFsTQpeVA5168LUqTTrNA/3U17s9fvZPFBqyeuyopRwWFLwolLxCHuE0CczaHVlrHmglPt7pI8OgU2bjI4mRLmTgheVjlKKOt3eol3f0zQ/NpA6809CZCRnX76fy4cSjY4nRLmRgheVlqlKNRo89i1OO/ahX4lmZ/gvxG2P4NCMu2SglHAIUvBCeHqixn9I63YrqXnMl4ONfyduWT0ZKCUqPCl4ISyqNb+LVsNSCHX+BJfLVdnpHcupJ4Jg1SqjowlRJlLwQtygZsdRtH3sDK1OvUitP7Oha1dOvNSerJ0rjY4mRKlIwQtRAOXkTJ2HPkLt2k3uB+PY0zGeuCP3sH96pAyUEhWGFLwQRXFzw/TqG0S220TdI8050mTj3wOlLl80Op0QRZKCF6IEqvqFETx8N21rfo/7afNAqQv3B8OiRWBHayoIkZ8UvBCl4BH+KKFPnKRt1mQ8UqtDnz6kvNqc8/E/GB1NiJtIwQtRSspkwqPnaNiyhatfTORQh/0knH2M3bFBMlBK2JUSFbxSqrlSaqVSapvl5zZKqdetG00IO+figvPIl4i6Yz9+h9tyrPEey0Cpe2SglLALJb2Cnw7EANkAWustwGPWCiVEReJSJ5CmQxNo1/B/1DzmyyHflWR3CIHZs0EmMhMGKmnBV9Nax92wTYb4CZFPtaC7aTUshajqP+Hq6o8eMoR979TnzKpPjI4mKqmSFvxJpVQTQAMopfoBR62WSogKzLXjw/DXX1yZ+ynprTNI5B9sj/Ula+dvRkcTlUxJC/55YBoQrJRKBcYAI60VSogKz2Si6mPP077bMQIO30VGozTijtzN/umRXD1xyOh0opIoacFrrfU9gDcQrLXuWIrXClFpObnXIWDwStqHmAdKHa+5EULDYMoUyM42Op5wcCUt6Z8BtNYXtNbnLNt+sk4kIRxP1YbhBA/fTVSzP3Fu2Zbcl8aw7dOaZPzypqwoJazGuagHlVLBQAjgqZR6KN9DNQDXYl7rCqwGqlqO85PWeuytxRXi1ixMTGXCst2kZWbRwMuN6O5B9An3tdnxnUPvgBUruPzrV1w4/xxbq71DzZmf0iR0Ku6R/W2WQ1QOxV3BBwG9AC/ggXxfEcBTxbz2MnCX1joUCAN6KKVuu5WwQtyKhYmpxMzfSmpmFhpIzcwiZv5WFiam2jaIUrjdN4J2vU/T9OjDnPPJJOHMo+yODeJqyl7bZhEOrcgreK31ImCRUup2rfX60uxYa62B85YfXSxfMmmHMMyEZbvJys65bltWdg4Tlu226VX8Naaq1fEb8BN1Tx7k0OJHOJO7CacWoRD9KvrFF1Hu7jbPJBxLSe/BH1FKLVBKpVu+flZK+RX3IqWUk1IqCUgHVmitNxTwnKeVUglKqYQTJ06ULr0QpZCWmVWq7bbiUieQpsMSCL9nJ6rH/WRPGMvGH2tx/Kdn0Tk5xe9AiEKUtOBnAouBBpav/1i2FUlrnaO1DgP8gCilVKsCnhOrtY7UWkd6e3uXOLgQpdXAy61U223N1DQIfvyR7F++BRcXdtaZyqZvanBm1WdGRxMVVEkL3kdrPVNrfdXyNQvzRyZLRGudCfwO9Ch9RCHKR3T3INxcnK7b5ubiRHT3IIMSFaxap4G0HZBJ0OmnuexxiURGsT3Wj9y9242OJiqY0oxkfdxyy8VJKfU4kFHUC5RS3kopL8v3bsC9wK5bSivELegT7ssHD7XG18sNBfh6ufHBQ60Nuf9eHOXkQv2+02h/r3mglEo7hikkHF58kdxT6UbHExWE0iVYrEAp5Q98AtyO+Y3SdcA/tNaHi3hNG2A24IT5L5J5WutxRR0nMjJSJyQklDy9EJWETktDjR3LxaVfkjRZ4X+pH/UfmY2pin3cXhLGUUpt1FpHFvhYSQreVqTghSjahU0L2bN1KGf8M6mWVoUmXjHU7jkWlDI6mjBImQteKfVmEfvVWut3bjVcflLwQhRP5+ZycvmbHDj7f2T5ZFN7T21atVuOCo8wOpowQFEFX9w9+AsFfAEMB/5ZbgmFECWmTCa8e7ybN1DKPekiqm0kDB/O1ZTdRscTdqS4gU4fXfteKeUBjAaGAt8DHxX2OiGE9V0bKEWP01DtPU6vmsy2LTNotOIe/B75ASf3WkZHFAYr9lM0SqlaSql3gS2Y/0KI0Fr/U2stb+ULYQ9q1oSJE6n6zTK8jtXnYOD/iPvVh+M/PS8DpSq5IgteKTUBiAfOAa211m9prU/bJJkQolSqBd9N62FphJom43KlCjvrfM7W2FqwerXR0YRBiruCfwnzyNXXgTSl1FnL1zml1FnrxxNClFbNzqNp+9gZgk49hfcaJ7jzTnS/h7i0e43R0YSNFXcPXhb1EKICUk4u1H8oFnpMhpb/5lj8O+w5tAC/Ne3w7/sjzrX9S7U/o6dZFmUjBS6EI6tWDV5/nVqfrMfnSDOONI1nw9pAUr97lNwrJZtkzW6mWRalJgUvRCVQtVEELYbvoa37t1Q77cneBvPY/rkPLFkCxQx2LGqaZWHfpOCFqEQ8IgcSNjiDkKzX8P3dEx54gKv3deX8pp8LfY29TrMsiicFL0Qlo0wmvHu+R62fDsLHH5PSKI6E0/3YHduCK0e23PR8e59mWRROCl6IysrFBV54Ad93t+F7KJxjjXexYWsoh2Z1I+f8qbynVZRplsXNpOCFqORcvBvTbNgm2vkuNw+UCljB7ikN4ZtvIDe3Qk2zLK4ns0kKIa5z+o/JuEyYjvt/d3D5rjZcGjsSz87PGh1LFOJWJhsTQlQyNe8cg/virTBnDofb7ycx9zm2xzYka4+MiK1opOCFEDczmeCJJ2gccxD/Q13IaJRCXPKd7P+yPVczDhmdTpSQFLwQolBOHt4EPvk7US3i8TnShCNN4zj4YTB89hlkZxsdTxRDCl4IUSxX/0haDN9HW/dvabQrAkaN4tx9zclYOq7YgVLCOFLwQogS84gcSNVFa2HxYo7ck8FW17FsnuFd5EApYRwpeCFE6SgFDzxA8JijNEnry7m6p8wDpaa34ErKVqPTiXyk4IUQZWKqWp2GA+fTvv1e80CpwF0cfTMS3nsPsmQaA3sgBS+EuCUu3k0sA6WW4XehB7z+OhmPNCJ9/guyopTBpOCFEOWiWotuOP2wCP74g6Pdr7Kj1qckfuPJmTXTjI5WaUnBCyHKV+fOhDyXTtCpEVyqkUVizki2T28kA6UMIAUvhCh35hWlphN1dxr+h+4ko+ERzv7jLnjlFcjMNDpepVHkkn1CCHErnGvUJfDJVTQ4vIkqDT6BiRNJO/IFPNCLeo/MxOTianTEW2bPyxnKFbwQwuqqNopAzZgJGzeScWdV9jT4noQfvTi19J0KPVDK3pczlIIXQthOeDitnk4n5OKr5DrnssX1TTbP8OZC0mKjk5WJvS9nKAUvhLApZTLhfd8HRD14iiZpfTjnc4qrT/SBp5+GY8eMjlcq9r6coRS8EMIQJld3Gg5cwG23JeN57xiYOZP97zbi8Owe5Fw4bXS8ErH35Qyl4IUQhnL2bgT//jd6+zaywrw54L+MuF+8SV/wD3RurtHximTvyxlKwQsh7IJqHkSrEamE8hHOV6qwo+YnJH7tyYW13xgdrVD2vpyhLNknhLA7OiebYwue5VDuLEJH5+DWuT/6gw9QjRsbHc3uyJJ9QogKRTm5UL/fl7S/7xRuI9+CJUvYPrcp+7+6jaunjhgdr8KQghdC2C3lXgPGjiV311ac6jXmSJMNbFjjT9rcgeRmXzI6nt2TghdC2D1Tw8a0GL6PiOpfUy2zBnvqzyXhRy8uLJ1WoQdKWZsUvBCiwqjR7nHCnjhFyIV/4pylqNpvJPToQe6WTUZHs0tS8EKICkWZTHjfP56IJ87g/N5kcjfGsTG+LXumt+RK6jaj49kVKXghRMVUpQqMHo3etQUvQklrvJMNm1tXqIFS1iYFL4So0JzqNKTZ8CTa1fsFr2P18gZKXZw3qdLfn7dawSulGiqlfldK7VBKbVdKjbbWsYQQldfCxFQ6jP+NVl/nMjL9W0wpb1AjxQPXAS/C7beT/edSoyMaxppX8FeBl7TWLYHbgOeVUi2teDwhRCVT0HS9z+y+g72dt2CaMYurJw8Rd7wnO6Y34tLetUbHtTmrFbzW+qjWepPl+3PATsA+xu8KIRxCodP1rtgLTz6J2rSZBmc7c7LhETYc7MSBr26vVAOlbHIPXikVAIQDGwp47GmlVIJSKuHEiRO2iCOEcBDFTdfrVMOHwCF/EBUch8/hxhxu8hcbVvtzefp4uHrVllENYfWCV0q5Az8DY7TWZ298XGsdq7WO1FpHent7WzuOEMKBlHS6XteAdrQYsZ+IanOov9WPqk/HQGgoF5d+ZYuYhrFqwSulXDCX+7da6/nWPJYQovIp7XS9NaKeoPHrh2DBArI8LhBvGsGWr7y5kLTQBmltz5qfolHAV8BOrfW/rXUcIUTlVabpepWCPn2oumorjU/05ky9k8Rn9GXP9BCHGyhltemClVIdgTXAVuDarP2vaa1/Kew1Ml2wEMLWrhzfw6El/UkN2IzzBbht91icX3gVXF2NjlYihkwXrLVeq7VWWus2Wuswy1eh5S6EEEaoUrd53kCpxnFtcH7lbQgOJvPnt+x+RaniyEhWIYQAqof0pMG7m2HlSs6GViGp9tskfu3JmT+nGx2tzKTghRAiv7vuwuPnbQSdGMKlGhdJzH6aHdP9ubSv4g2UkoIXQogbKOcq1H9kJlF3peCf3ImTjQ6zcUsncmNehrM3fdrbbknBCyFEIZw96xM4ZDVRzTcQnNAV0/iP0M2akP7dUxViRSkpeCGEKIZrYBS13/8N4uM51asuOxp8ycYfvTi1/H2joxVJCl4IIUoqMpJa07cQcu5lcpxz2FLlX+aBUpsXG52sQFLwQghRCspkwvuBCUQ9kEGTlAc4U+8k27b0Ro98BtLTjY53HSl4IYQoA5NbDRo+vpj2bXfRck9/1JdfkdOyCSmzHiTnYqbR8QApeCGEuCVV6gXh8c4PsG0bJ4c2Z1/Af4hf4k36wv9n+EApKXghhCgPwcHUnbCRNjkf4pTtzA6vySTO8eTsOuNmrJSCF0KIclTr7leIfPQMQSeGkOV1kf3xI2DAADh0yOZZpOCFEKKcXRso1b5rCsEXXoBFi7h8e3MOzOjA1dMpNsshBS+EEFbi7Fkft9c+ht27yXgugsON17Hhj0ak/fA4Ovuy1Y8vBS+EENbWsCENXl9PhNssqp3xYE/db0mY58mpFR9Y9bBS8EIIYSM12j9J2BOnzQOlXHI4/vtrcN99sGOHVY4nBS+EEDaUf6BU07rvwLp10LEjXLxY7seSghdCCAOY3GrgMvp12LcP5s2DatXK/xjlvkchhBAlV6cO3HOPVXYtBS+EEA5KCl4IIRyUFLwQQjgoKXghhHBQUvBCCOGgpOCFEMJBScELIYSDkoIXQggHJQUvhBAOSgpeCCEclBS8EEI4KCl4IYRwUFLwQgjhoKTghRDCQUnBCyGEg5KCF0IIByUFL4QQDkoKXgghHJQUvBBCOCgpeCGEcFBS8EII4aCcrbVjpdQMoBeQrrVuZa3jCCFERbUwMZUJy3aTlplFAy83orsH0Sfct9z2b80r+FlADyvuXwghKqyFianEzN9KamYWGkjNzCJm/lYWJqaW2zGsVvBa69XAKWvtXwghKrIJy3aTlZ1z3bas7BwmLNtdbscw/B68UupppVSCUirhxIkTRscRQgibSMvMKtX2sjC84LXWsVrrSK11pLe3t9FxhBDCJhp4uZVqe1kYXvBCCFEZRXcPws3F6bptbi5ORHcPKrdjWO1TNEIIIQp37dMy1vwUjTU/JjkX6ALUUUqlAGO11l9Z63hCCFHR9An3LddCv5HVCl5rPcBa+xZCCFE8uQcvhBAOSgpeCCEclBS8EEI4KCl4IYRwUEprbXSGPEqpE8Aho3MUoA5w0ugQhZBsZSPZykaylY01s/lrrQscJWpXBW+vlFIJWutIo3MURLKVjWQrG8lWNkZlk1s0QgjhoKTghRDCQUnBl0ys0QGKINnKRrKVjWQrG0OyyT14IYRwUHIFL4QQDkoKXgghHJQUfDGUUslKqa1KqSSlVILBWWYopdKVUtvybaullFqhlNpr+bOmHWV7SymVajl3SUqp+wzK1lAp9btSaodSartSarRlu+Hnrohshp87pZSrUipOKbXZku1ty/ZApdQGpdQ+pdQPSqkqdpRtllLqYL7zFmbrbPkyOimlEpVSSyw/2/y8ScGXTFetdZgdfMZ2FjcvZP4qsFJr3QxYafnZCLMoeJH1SZZzF6a1/sXGma65CryktW4J3AY8r5RqiX2cu8KygfHn7jJwl9Y6FAgDeiilbgM+tGRrCpwGhttRNoDofOctyYBs14wGdub72ebnTQq+AilkIfPewGzL97OBPrbMdI09L7KutT6qtd5k+f4c5v/pfLGDc1dENsNps/OWH10sXxq4C/jJst2o81ZYNruglPID7ge+tPysMOC8ScEXTwPLlVIblVJPGx2mAHW11kct3x8D6hoZpgCjlFJbLLdwDLl9lJ9SKgAIBzZgZ+fuhmxgB+fOcpshCUgHVgD7gUyt9VXLU1Iw6C+kG7Npra+dt/cs522SUqqqEdmAycArQK7l59oYcN6k4IvXUWsdAfTE/OtzZ6MDFUabP/NqN1cxwBdAE8y/Qh8FPjIyjFLKHfgZGKO1Ppv/MaPPXQHZ7OLcaa1ztNZhgB8QBQQbkaMgN2ZTSrUCYjBnbAfUAv5p61xKqV5AutZ6o62PfSMp+GJorVMtf6YDCzD/R25Pjiul6gNY/kw3OE8erfVxy/+EucB0DDx3SikXzAX6rdZ6vmWzXZy7grLZ07mz5MkEfgduB7yUUtdWg/MDUo3KBddl62G55aW11peBmRhz3joADyqlkoHvMd+amYIB500KvghKqepKKY9r3wPdgG1Fv8rmFgNPWr5/ElhkYJbrXCtPi74YdO4s9z+/AnZqrf+d7yHDz11h2ezh3CmlvJVSXpbv3YB7Mb9H8DvQz/I0o85bQdl25fsLW2G+x23z86a1jtFa+2mtA4DHgN+01oMw4LzJSNYiKKUaY75qB/P6td9prd8zME/eQubAcWAssBCYBzTCPNVyf621zd/sLCRbF8y3GDSQDDyT7563LbN1BNYAW/n7nuhrmO91G3ruisg2AIPPnVKqDeY3A50wXwzO01qPs/x/8T3mWyCJwOOWK2Z7yPYb4A0oIAkYme/NWJtTSnUBXtZa9zLivEnBCyGEg5JbNEII4aCk4IUQwkFJwQshhIOSghdCCAclBS+EEA5KCl5UOEopwz72li/DL0opL8vXc8U8d6pSqsMN24KUUqssMx7uVErFWraHGTFzpHBMUvCi0sg3ivCWaa3vs4yg9AKKLHjMs0T+dcO2j/l7tsgWwCeW7WGAFLwoF1LwwiEopZoopZZaJoVbo5QKtmyfZbmC3gD8n+Xnj5VS65RSB5RS/SzPG5dvDvFUpdRMy/bHLfOOJymlpimlnCzbk5VSdYDxQBPL4xMKyNUC2KO1zrnhofqYJ5wCQGu91TI/+DjgUcv+Hi3/MyUqExnoJCocpdR5rbX7DdtWYh61uFcp1R74QGt9l1JqFubRtb211jmWn6sDj2KelGqxZX7ua/vxwjyydAhwEfg/4CGtdbZS6nPgL631HMs8I5GAO7BEa92qkKwvYp5FcMYN24dinnFwHbAcmKm1zlRKDQEitdajynp+hLim3H5lFcIolpkY7wB+NE9BAkD+aWJ/vOEKeqFlEq8dSqm8KYIt85d8A/xba71RKTUKaAvEW/brRuknJOsODL1xo9Z6plJqGeZFUnoDzyilQku5byGKJAUvHIEJ81VyWCGPX7jh5/zzf6h8378FpGitZ+Z7bLbWOqYsoZRS1QAvrXVaQY9bts8AZijzUocF/hYgRFnJPXhR4VnmTz+olHoEzFfipb0aVko9ANwD/CPf5pVAP6WUj+U5tZRS/je89BzgUchuu2KeQbCg4/WwTBOMUqoe5gUhUovZnxClIgUvKqJqSqmUfF8vAoOA4UqpzcB2zLc9SuNFzCvsXHtDdZzWegfwOuYVvbZgXtEo/zS+aK0zgD+VUtsKeJO1J7C0kON1A7ZZ8i7DvI7oMcx/IbSUN1lFeZA3WYWwEqXUJqC91jrb6CyicpKCF0IIByW3aIQQwkFJwQshhIOSghdCCAclBS+EEA5KCl4IIRyUFLwQQjio/w+L9/Nsqj+N1AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(Lernzeit, polyline[0]*Lernzeit + polyline[1], 'r', label='np.polyfit')\n", "plt.plot(Lernzeit, zufuss(Lernzeit), '--y', label='Zufuß')\n", "plt.scatter(Lernzeit, Note, label='Datenpunkte')\n", "plt.xlabel('Lernzeit / St')\n", "plt.ylabel('Note')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Schätzung\n", "\n", "Eine Regression erlaubt es, Erwartungswerte für Punkte zu erhalten, für die man keine Daten hat.\\\n", "Was wäre die erwartete Note einer Studentin, die 25 Stunden gelernt hat? " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Lösung" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [ "hide-input", "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.0029999999999997\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAybklEQVR4nO3deVxU9f7H8deXRQFBEMUVWdwVFVBEuy6pmUtpLlcttUxzycqu3oqSrCzL0p921eqWYbmVmeba6nItUrMEVBT3FRVccMMVleX7+2NGQmWX4QzD5/l48HA4c5Y3R/1w5sx8P1+ltUYIIYTtsTM6gBBCCMuQAi+EEDZKCrwQQtgoKfBCCGGjpMALIYSNcjA6QFaVKlXSfn5+RscQQogSY+vWree01l7ZPWdVBd7Pz4+YmBijYwghRImhlDqW03Nyi0YIIWyUFHghhLBRUuCFEMJGWdU9eCGE9UhNTSUhIYEbN24YHUUATk5OeHt74+jomO9tpMALIbKVkJCAm5sbfn5+KKWMjlOqaa05f/48CQkJ+Pv753s7uUUjhMjWjRs3qFixohR3K6CUomLFigV+NSUFXgiRIynu1qMwfxc2UeD1uxO59sc3RscQQgirUvILfHIyZ7fNIPrmIPbN8ufmob+MTiSEKKH8/Pw4d+5cruuEhYUREBBAWFgYs2bNYsGCBQDMmzePkydPFkfMfCv5b7J6eOA5N46a3/cnofZmkg49gM9vran5zyXYe1Y3Op0QwsZERERw4cIF7O3t71g+b948GjduTPXq1lN3LFrglVLxwBUgHUjTWocU9TFWbk9k6pr9nEx+nbbxh3mxylTi6//BhSW+NONjGD4cHIz5PfZ3thSqezgT1qU+vYJrGJJFiJIoPj6ebt260aZNGzZv3kyNGjVYtWoV3bp1IzAwkN9//520tDTmzJlDaGjoHdtGRkby1ltv4ebmxqFDh+jQoQOffvopdnZ2LFq0iPfffx+tNY8++ihTpky5Y9u33noLT09Pxo4dC8D48eOpXLky69ev5+rVqzRv3pzw8HD27t2Lq6trZpuVQYMG4ezszJ9//omzs3NxnaYcFUfl66C1zv01TyGt3J5I+PI4UlLTAdhwvTbRCbP51HMXflHzYe5zpH82kyv/NwyPLq9YIkK+syUmpxC+PA5AirwoecaOhdjYot1nUBDMmJHnagcPHmTRokXMnj2b/v37s2zZMgCuX79ObGwsGzZs4JlnnmHXrl33bBsVFcWePXvw9fWla9euLF++nH/84x+89tprbN26lQoVKtC5c2dWrlxJr169Mrd75pln6NOnD2PHjiUjI4Nvv/2WqKgoxowZg6urK7Hmc/H2228D0LdvXz755BOmTZtGSEiRX8cWWom+Bz91zf7MAnpbSmo6bxxuhueXO2H5ck61Okts2TB2RVTh+o6fDM82dc3+YssghC3w9/cnKCgIgObNmxMfHw/AgAEDAGjXrh2XL18mOTn5nm1DQ0OpVasW9vb2DBgwgE2bNhEdHU379u3x8vLCwcGBQYMGsWHDhju28/Pzo2LFimzfvp21a9cSHBxMxYoVLfljWoSlr+A1sFYppYHPtdYRd6+glBoJjATw8fEp0M5PJqfkvFwp6N2bal07kr5iIMdr/kz02e7U+LwJvj2W4Fi9QYF/mCLLJkRJk48rbUspW7Zs5mN7e3tSUkz/h+7+2GB2HyPMzzo5GT58OPPmzeP06dM888wzBYlsNSx9Bd9Ga90M6Aa8oJRqd/cKWusIrXWI1jrEyyvblsY5qu6R/T2urMvtnd3xHfgTocG7qXqiMQl14ti7qDFMngwWHIKdn2xCiMJbvHgxAJs2bcLd3R13d/d71omKiuLo0aNkZGSwePFi2rRpQ2hoKL///jvnzp0jPT2dRYsW8eCDD96zbe/evVm9ejXR0dF06dIlzzxubm5cuXLl/n+wImTRAq+1TjT/mQSsAEJz36JgwrrUx9nxzneynR3tCetS/551y1ZtRP2hcYRUWUWtPW0gPJxbLepybsUr6IyMooxV4GxCiIJzcnIiODiYUaNG8eWXXwIQExPD8OHDM9dp0aIFo0ePpmHDhvj7+9O7d2+qVavG5MmT6dChA4GBgTRv3pyePXves/8yZcrQoUMH+vfvf88nZrIzZMgQRo0aRVBQUOarDKMprbVldqxUOcBOa33F/HgdMFFrvTqnbUJCQnRBJ/wo9CdVfv2Vo+sGcqzLGTwOl6d2g5m4tR5SoGNbLJsQVmDv3r00bNjQ6BjZat++fZ5vaEZGRjJt2jR+/PHHQh0jIyODZs2a8d1331G3bt3CRi1S2f2dKKW25vQJRUveg68CrDDf83IAvsmtuBdWr+AahSuaHTvi2zaeMqtGEO+1kK03h1J11jv4d/qWsnVaGptNCGGoPXv20L17d3r37m01xb0wLHYFXxiFuYIvCqnJCRz/vj8J1f6k8u92NEwLg9dfh/Lliz2LENbCmq/gS6uCXsGX6I9JFhVHD29qD95MaO1N+J/rBVOmcK29H6cXDUGn3jI6nhBCFIoU+Cyca7XGadYyiI7mVF9n9lWbz9ZF7iSvnWp0NCGEKDAp8NkJCaH2uOM0vDqG1HJpxJZ5lV2fV+X6jp+NTiaEEPkmBT4Hys6eKt1nENrtLP6J3bjoc4bT/30UnnsOkpKMjieEEHmSAp8HexcPfAf9TGjQLnxcn4XZs7nQ14+EeY+Rcd26BjUIYWtWrFhBUFDQHV92dnb88ssvOW6zceNGAgIC8vw8enR0NCEhIQQFBfH444+Tnp6e47ollRT4fCpbLQCH/8yCXbs416cyh/x+IHqVJ+dWhllkoJQQwjSaNDY2NvPr+eefp23btrmOLF24cCHh4eHExsbm2tHxlVdeYcqUKcTGxlKpUiV+/tn2bsFKgS+oBg2oO+YoTdInoezs2eUxjR1zK3Bl8wKjkwlh0w4cOMDEiRP56quv2LBhA927d898bvTo0cybN48vvviCJUuW8OabbzJo0CAiIyOzXQ/g+PHjBAYGEh4eTmpqKvXq1SvuH8niSv6EHwZQSlHxodepkPoSp1YN52jlb7jy/tO4uf0CH3wAfn5GRxSiyG3f3v6eZZUr96dGjedJT7/Ozp2P3PN81apDqFZtCLdunWP37r53PBccHJnvY6empjJw4EA+/PBDfHx8OHLkSLbrDR8+nE2bNtG9e3f69u1LZGTOx7g9Buizzz7j5MmTuLi45DtPSSFX8PfBztGJGn2/pmXb41RrNh5WruTUv+oS/0Vb0i+eMjqeEDbjzTffJCAggMcff7zI9z148GA6d+5MQkJCke/baHIFXwQcPbxh4nsw4lmu/PgQJ+ts4uSv3tS6NZgqfT9HOZYxOqIQ9y23K257e5dcny9TplKBrtizioyMZNmyZWzbti1zmYODAxlZ3vu6kUNn2Pys99FHH7FkyRI6d+7Mnj17CpXRWskVfFGqWZN6zx0gyCmCsiku7Ks2j62L3Lm8dqbRyYQokS5evMjQoUNZsGABbm5umct9fX3Zs2cPN2/eJDk5mfXr12e7fV7rpaWlAdCzZ0/OnDnDrVu2NXJdruAtwKPVCJqFPkPSTy9xpNx/SQsfC9NXw7RpEBBgdDwhSoxZs2aRlJTEc889d8fy8PBw+vfvT+PGjfH39yc4ODjb7WvWrJnrej/99BMzZ84kIyOD119/nTJlbOvVtjQbs7CMlMvYfTob3n2XI/0ukRHSFN/HvsOxmu29Yy9sizQbsz7SbMzK2DmXh5dfRh88SFqrJiTU3cmW6AYkzO8pA6WEEBYlBb6YKC8v6g3bSYjXClwvVuSQ7/dEr/Lk0vL3wIpeRQkhbIcU+GLm2qQXgYOTaJL+HnbaAYd/vwmtW6P/2mx0NCGEjZECbwDTQKnxhPS/Qrm3voAjR9izujX7ZtXm5uEoo+MJIWyEFHgDKQcHGDYMfWA/Tv6tOFP7CFsOtCT+i3akJ582Op4QooSTAm8FVHl3aj/9J6G1N1DxtA/xdTayZX0NLi8IB/PndIUQoqCkwFsR51ptCRh6jCCnCMpdLI/Ti5MhOJj0td8bHU0IQ9jb2xMUFETjxo3p168f169fL/S+hgwZwtKlSwFTz5rcRq1GRkayefPf74vNmjWLBQtKXkNBKfBWyKPVCAKHXaDMnKXolGtsP9rTNKPUzpx7YAthi5ydnYmNjWXXrl2UKVOGWbNm3fF8WiFf4X7xxRc0atQox+fvLvCjRo1i8ODBhTqWkaTAWyul4J//RMftxMu1Kxd8zhB95hEOfR5I6umDRqcT4h4L4xbiN8MPu3fs8Jvhx8K4hUW6/7Zt23Lo0CEiIyNp27Ytjz32GI0aNSI9PZ2wsDBatGhB06ZN+fzzzwFTt8jRo0dTv359OnXqRFKWmdjat2/P7UGVq1evplmzZgQGBvLQQw8RHx/PrFmzmD59OkFBQWzcuJG3336badOmARAbG0urVq1o2rQpvXv35uLFi5n7fO211wgNDaVevXps3LixSH/+wpACb+XsnF3xHfQLLYN2UTWhkWmgVFR9rvx3LNy8aXQ8IQBTcR/5w0iOXTqGRnPs0jFG/jCyyIp8Wloav/zyC02aNAFg27ZtzJw5kwMHDvDll1/i7u5OdHQ00dHRzJ49m6NHj7JixQr279/Pnj17WLBgwR1X5LedPXuWESNGsGzZMnbs2MF3332Hn58fo0aN4t///jexsbG0bdv2jm0GDx7MlClT2LlzJ02aNOGdd965I2dUVBQzZsy4Y7lRpMCXEGWrBVB/6G5CKi2n0vEalBs7Exo25Oayz2VGKWG48evHcz31zvvj11OvM379+Pvab0pKCkFBQYSEhODj48OwYcMACA0Nxd/fH4C1a9eyYMECgoKCaNmyJefPn+fgwYNs2LCBAQMGYG9vT/Xq1enYseM9+//rr79o165d5r48PT1zzXPp0iWSk5N58MEHAXj66afZsGFD5vN9+vQBoHnz5sTHx9/Xz14UpNlYCePatDcNmvaG+utIH/dvtmaMwmXua9QO+AS3Vk8aHU+UUscvHS/Q8vy6fQ/+buXKlct8rLXm448/vmcaPyOm4CtbtixgenO4sO8PFCW5gi+pHn4Y9VcMvgzkqtdltl5/in2f1+bmkWijk4lSyMfdp0DLi1KXLl347LPPSE1NBUxT+127do127dqxePFi0tPTOXXqFL/99ts927Zq1YoNGzZw9OhRAC5cuACAm5sbV67c2yvK3d2dChUqZN5f/+qrrzKv5q2RFPgSzM7RiRr9FtKy7TFqHm/FmVpH2HIglOuTRkE2/ziFsJRJD03CxfHOKe9cHF2Y9NAkix97+PDhNGrUiGbNmtG4cWOeffZZ0tLS6N27N3Xr1qVRo0YMHjyYBx544J5tvby8iIiIoE+fPgQGBmbOGNWjRw9WrFiR+SZrVvPnzycsLIymTZsSGxvLW2+9ZfGfsbCkXbANSTm8kdOrXsDv5ThUlSpcnfIs5Qa9gXJwNDqaKIEK2i54YdxCxq8fz/FLx/Fx92HSQ5MY1GSQBROWPgVtFyz34G2Ic+22+L+0E9pEcfOt0WyrPBGXb6ZSp/q7eHR62eh4wsYNajJICrqVkVs0tig0lDI//0m91NGkut4i1uEVdkVU5XrcaqOTCSGKkRR4G6Xs7Kn62MeEdknCP6ELF2qeIfpUN26+MhTOnjU6nhCiGEiBt3H25TzxfXI1LQPjqLejA2VnfAV163IhYiQZKVeNjieEsCAp8KVE2eqNqRb2K+zcyfXugeysM5volZ6c+36cDJQSwkZJgS9tGjXC+atIGqe/A3aKXeWnsGOuJ1f++troZEKIIiYFvhRSSlHp4bdo0ecSdZKe4Grly8ReeIq0oY/D8fsbeShEUbrdLjggIIDAwEA+/PBDMvJ4xRkfH88333xTTAnz5ufnx7lz5+5YlpyczKeffmrxY0uBL8XsHJ3w7r+Ilm3iCdj7BA6LVqHr1+PUf3uQfumM0fGEyGxVsHv3btatW8cvv/ySZxMvayvw2ZECL4qNYwUfPF9eBPv3c3nUg+wP+JGo/1Xn9LfD0WmpRscTJcTK7Ym0nvwr/uN+ovXkX1m5PbFI91+5cmUiIiL45JNP0FoTHx9P27ZtadasGc2aNcvsFjlu3Dg2btxIUFAQ06dPz7GdcGRkJO3bt6dv3740aNCAQYMGcXvgp5+fH6+++ipNmjQhNDSUQ4cOAXdOGgLg6uqa575uS0lJoVu3bsyePZtx48Zx+PBhgoKCCAsLA2Dq1KmZGSdMmFAk50wGOom/+friPn0NQZs/53DKy+zz/pLEb76hdvVJeHT6t9HphBVbuT2R8OVxpKSmA5CYnEL48jgAegXXKLLj1KpVi/T0dJKSkqhcuTLr1q3DycmJgwcPMmDAAGJiYpg8eTLTpk3jxx9/BCAiIiKznfDNmzdp3bo1nTt3BmD79u3s3r2b6tWr07p1a/744w/atGkDmPrOxMXFsWDBAsaOHZu5v5zktq+rV6/yxBNPMHjwYAYPHszDDz/Mrl27MhuprV27loMHDxIVFYXWmscee4wNGzbQrl27+zpfcgUv7uHxj2dpNvASDS6P5pbrLfZcfImMno/Cvn1GRxNWauqa/ZnF/baU1HSmrtlvsWOmpqYyYsQImjRpQr9+/XKcgi+ndsJgajvs7e2NnZ0dQUFBd7T4HTBgQOaff/75Z555cttXz549GTp0aI6zQq1du5a1a9cSHBxMs2bN2LdvX2bG+2HxK3illD0QAyRqrbtb+njCZOX2RKau2c/J5BSqezgT1qV+ga6kbg+U8rr2DilzJmIXOZeMoACOf9iCGn0X4liltgXTi5LmZHJKgZYX1pEjR7C3t6dy5cq88847VKlShR07dpCRkYGTk1O22+TUTjgyMjKzvS/c2+JXKXXPYwcHh8w3eTMyMrh161bmOrntq3Xr1qxevZqBAwfesd+sGcPDw3n22WfzdR7yqziu4McAe4vhOMLs9svlxOQUNH+/XC7MPVH7cp64vjgDDh4kOfwR4htuYcuWuiQs6C0DpUSm6h7OBVpeGGfPnmXUqFGMHj0apRSXLl2iWrVq2NnZ8dVXX5GebnoFcXer35zaCedl8eLFmX/e7kTp5+fH1q1bAfj+++8z95mXiRMnUqFCBV544YUcM86ZM4erV03/pxITE++YYrCwLFrglVLewKPAF5Y8jriTRV4uV66M54QfaF5xKa4XPTnks9I8UCpcBkoJwrrUx9nR/o5lzo72hHWpf1/7vT2jU0BAAJ06daJz586Zb0A+//zzzJ8/n8DAQPbt25c5CUjTpk2xt7cnMDCQ6dOn59hOOC8XL16kadOmzJw5k+nTpwMwYsQIfv/9dwIDA/nzzz/vmHgkLzNnziQlJYVXX32VihUr0rp1axo3bkxYWBidO3dm4MCBPPDAAzRp0oS+fftm24++oCzaLlgptRT4AHADXsnuFo1SaiQwEsDHx6f5sWPHLJantPAf9xPZ/a0q4OjkR+97/1przv9vIocvvI998i2aL2yN+nA6tGhx3/sW1qOg7YLv97agNfHz8yMmJoZKlSoZHeUOVtMuWCnVHUjSWm9VSrXPaT2tdQQQAaZ+8JbKU5pU93AmMZt7n0X1ctk0UGoCnrde5dbXM1H7p3OrUyjxH9TDt9tCyvpn+29N2LhewTVKbEG3VZa8RdMaeEwpFQ98C3RUSsl4+GJgqZfLd7Mr44zTM+Pg4EEuvf1PTtU9wJZ9LYif04H0S/d//1AIo8THx1vd1XthWKzAa63DtdbeWms/4AngV621zApdDHoF1+CDPk2o4eGMAmp4OPNBnyaWu7oqXx6vfy+lhX8knqe9ia8VSdT/qnF6yQhIT897e2G1rGnGt9KuMH8XMtDJRhnxctmlzoM0rnOC5M2fcSgljHOHv6Bq82j48EN46KFizSLun5OTE+fPn6dixYrZfrRPFB+tNefPn8/xo6A5kTlZhUXojHTSly7A4dV3uJZxjPjx1ajVZj7OAQ8bHU3kU2pqKgkJCdy4ccPoKALTL1xvb28cHe+cYzm3N1mlwAvLunGDpK+Gsa/mN2h7qHE0GN9eS3GsXMvoZELYhNwKvLQqEJbl5ETlEQtp2WQHVU40IKHOdrb8VYeTC/pBllGAQoiiJwVeFIuyNZrS4Jm95oFSFUjZvBQaNYLly2WglBAWIgVeFCu3wH8SOPgc/r1+ACcnLrz/T3bMrcjVqEVGRxPC5kiBF8VOKYVd1+4QG0vaS8O5WvkSMVcHsi+iLjfjtxodTwibIQVeGMfBgcoDZ9Oy9VG8j7fgjP8htuwNISGiG1yVRmZC3C8p8MJwjp6+1BkSRQu/3/A85Y36eTXnqvvx6qMv0u79NUU+M9D9sPSsRUIUJSnwwmq41G3PoeC/eKXChxx3q8RY9QnvV+nJ5q8nWkUhLco2zEIUBynwwqpMXbOfP6vUp8+T05hfvyfaPZVHekTg8VtTUnavMzxbcc9aJMT9kAIvrErmDEBK8bnjCJ6P/poTvwVh1+gCUSc7c+KjdnD+vLHZ8rlcCKNJgRdW5e6WxldUed68+R6fREVQ5UQDXBZtgjp1SJ8xhYwbec/KY8lseS0XwmhS4IVVyanV8cAej9Dgmb1UnL0TWrbk2O5xxKyowPkfxhfbQKniasMsRFGRAi+sSp6tjhs3htWrce/3DtpOEef2PjvnVuRq1LfGZxPCykizMVFiZdy6zskVQ4gvt5Q0F02dqBZ4P7UCakjBFaWHNBsTNsmujAvejy+h5QNH8D4egsfc7VC3LrcmvUr6lXNGxxPCcFLgRYnnWNGPOkOicV19AB57jEM3phK1pgpnvnsWnZ5mdDwhDCMFXtgOf3/49luqd/0vjjec2OsVwbaF7iT/9pHRyYQwhBR4YXM8Wj9P84GXaZD8HDfdbhKrxnDyjSA4cMDoaEIUKynwwiYpO3uq9vqUlg+fxu/Ew1SafwgCAkh5fQipZ48aHU+IYiEFXtg0e9dK+D21ljIxh2HYMPZWm8+WP2uT+HXfYh8oJURxkwIvSocqVWDWLOq2XYLrBQ8Oei8zDZT68Q2ZUUrYLCnwolRxC+pH4NPnaXxrgmmglOskksYEwLZtRkcToshJgReljlKKSp3fpkXvi9Q7PZBKy89BSAiXX3mUm8e2Gx1PiCIjBV6UWnZlXKj+xELs9xxCvxrG3uCfidrdjGNzOspAKWETpMAL4e6OmjyFJi3WU+F0DY7W+o2oNVVloJQo8aTAC2HmUq8jjZ9JINDhYxxvlmWvVwQXnqoPkZFGRxOiUKTAC3GXCm1G0/yJSzS+8BKef6RChw6cfbklKXvXGx1NiAKRAi9ENpS9A5X6fIjat5+MDyZyoE00USc6cXh2iAyUEiWGFHghcuPsjN24NwlpsY0qJ+pxovbWvwdK3bxudDohciUFXoh8KOsdRINh+2le4VtcL5oGSl17tAGsWgVWNKeCEFlJgReiANyCHyfwqXM0T5mBW2I56NWLhHH1uBq92OhoQtxDCrwQBaTs7HDrNgZ27iTts2kca32YmMtPsD+ivgyUElYlXwVeKVVPKbVeKbXL/H1TpdQblo0mhJVzdMRh1MuE/uMw3sebc7rWAfNAqU4yUEpYhfxewc8GwoFUAK31TuAJS4USoiRxrORPnaExtKj5PyqcrsGxGutJbR0A8+eDNDITBspvgXfRWkfdtUyG+AmRhUv9h2j8TAKh5Zbi5OSLHjKEQ+9W41Lkx0ZHE6VUfgv8OaVUbUADKKX6AqcslkqIEsypzT/hr7+4tegTkpqcZzv/YndEDVL2/mp0NFHK5LfAvwB8DjRQSiUCY4FRlgolRIlnZ0fZJ16gZefT+B3vyHmfk0SdeIjDs0NIO3vM6HSilMhvgdda606AF9BAa92mANsKUWrZu1bCb/B6WgaYBkqdqbAVAoNg5kxITTU6nrBx+S3SywC01te01lfMy5ZaJpIQtqdszWAaDNtPaN0/cGjUnIyXx7Lrkwqc//ktmVFKWIxDbk8qpRoAAYC7UqpPlqfKA055bOsEbADKmo+zVGs94f7iCnF/Vm5PZOqa/ZxMTqG6hzNhXerTK7hGsR3fIfAfsG4dN3/5kmtXnyfO5V0qzP2E2oGzWFU2lfHrx3P80nF83H2Y9NAkBjUZVGzZhO3JtcAD9YHugAfQI8vyK8CIPLa9CXTUWl9VSjkCm5RSv2it/ypsWCHux8rtiYQvjyMlNR2AxOQUwpfHARRrkUcpnB8ZToubAzi5/GniKy8n5tLjuEcp1EWNLgfHLh1j5A8jAaTIi0LL9RaN1nqV1noo0F1rPTTL17+01pvz2FZrra+av3U0f0nTDmGYqWv2Zxb321JS05m6Zr8heezKlsN7wFJaPnCYC9FlqFpBE/cRvBkJLrfgeup1xq8fb0g2YRvyew/+hFJqhVIqyfy1TCnlnddGSil7pVQskASs01pvyWadkUqpGKVUzNmzZwuWXogCOJmcUqDlxcWxkj99b6YyYB/8UhvejIH/+cOE63DionziRhRefgv8XOB7oLr56wfzslxprdO11kGANxCqlGqczToRWusQrXWIl5dXvoMLUVDVPZwLtLw4+bj7cKgC9O8P/YZBqj207wa/11Rcivyv0fFECZXfAl9Zaz1Xa51m/pqH6SOT+aK1TgZ+A7oWPKIQRSOsS32cHe3vWObsaE9Yl/oGJfrbpIcm4eLoAsCqCtAxHv5Yb4/yhO2MZneENxkHdxsbUpQ4BRnJ+qT5lou9UupJ4HxuGyilvJRSHubHzsDDwL77SivEfegVXIMP+jShhoczCqjh4cwHfZoU7xusORjUZBARPSLwdfdFofCu4Itf//m0evgMfsc7ok6exi4gGF56iYwLSUbHFSWE0vmYrEAp5Qt8DDyA6Y3SzcC/tNbHc9mmKTAfsMf0i2SJ1npibscJCQnRMTEx+U8vRCmhT55ETZjA9dVfEDtD4XujL9X6zceujPG3l4SxlFJbtdYh2T6XnwJfXKTAC5G7a9tWciBuKJd8k3E5WYbaHuFU7DYBlDI6mjBIoQu8UuqtXPartdbv3m+4rKTAC5E3nZHBubVvceTy/5FSOZWKByrSuMVaVHAzo6MJA+RW4PO6B38tmy+AYcBrRZZQCJFvys4Or67v0aLnReqc+ieusddRzUNg2DDSEoz5TL+wTrmOZNVaf3j7sVLKDRgDDAW+BT7MaTshhOXdHihF14vgMomLkTPYtXMOPus64d1vMfaunkZHFAbL81M0SilPpdR7wE5MvxCaaa1f01rLW/lCWIMKFWDaNMp+vQaP09U46v8/on6pzJmlL6DT0/PeXtisXAu8UmoqEI2p90wTrfXbWuuLxZJMCFEgLg0eoskzJwm0m4HjrTLsrfQpcRGesGGD0dGEQfK6gn8Z08jVN4CTSqnL5q8rSqnLlo8nhCioCu3G0PyJS9S/MAKvjfbw4IPovn24sX+j0dFEMcvrHrxM6iFECaTsHanWJwK6zoBG/+F09LscOLYC740t8O39HQ4VfQu0P6PbLIvCkQIuhC1zcYE33sDz4z+pfKIuJ+pEs2WTP4nfPE7Grfw1WbvdZjkxOQXN322WV25PtGx2cd+kwAtRCpT1aUbDYQdo7roQl4vuHKy+hN2fVoYff4Q8BjtaW5tlkX9S4IUoRdxCBhI0+DwBKa9T4zd36NGDtEc6cHXbshy3sdY2yyJvUuCFKGWUnR1e3SbhufQofPQRCT5RxFzsy/6Ihtw6sfOe9a25zbLInRR4IUorR0d48UVqvLeLGseCOV1rH1viAjk2rzPpVy9krmbNbZZF7qTAC1HKOXrVou4z22hRY61poJTfOvbPrAlffw0ZGVbdZlnkTrpJCiHucPH3GThOnY3rT3u42bEpNyaMwr3dc0bHEjm4n2ZjQohSpsKDY3H9Pg4WLOB4y8Nsz3ie3RE1STkgI2JLGinwQoh72dnBU09RK/wovsfac94ngaj4Bzn8RUvSzstE4CWFFHghRI7s3bzwf/o3QhtGU/lEbU7UieLolAbw3/9CaqrR8UQepMALIfLk5BtCw2GHaO66EJ99zWD0aK48Uo/zqyfmOVBKGEcKvBAi39xCBlJ21Sb4/ntOdDpPnNMEdszxynWglDCOFHghRMEoBT160GDsKWqf7M2VKhdMA6VmN+RWQpzR6UQWUuCFEIViV7YcNQcup2XLg6aBUv77OPVWCEyaBCnSxsAaSIEXQtwXR6/a5oFSa/C+1hXeeIPz/XxIWv6izChlMCnwQogi4dKwM/aLV8Hvv3OqSxp7PD9h+9fuXNr4udHRSi0p8EKIotWuHQHPJ1H/wnBulE9he/oods/2kYFSBpACL4QocqYZpWYT+tBJfI89yPmaJ7j8r47w6quQnGx0vFIj1yn7hBDifjiUr4L/05FUP76NMtU/hmnTOHniM+jRnar95mLn6GR0xPtmzdMZyhW8EMLiyvo0Q82ZC1u3cv7Bshyo/i0x33lwYfW7JXqglLVPZygFXghRfIKDaTwyiYDr48hwyGCn01vsmOPFtdjvjU5WKNY+naEUeCFEsVJ2dng98gGhj12g9sleXKl8gbSnesHIkXD6tNHxCsTapzOUAi+EMISdkys1B66gVat43B8eC3Pncvg9H47P70r6tYtGx8sXa5/OUAq8EMJQDl4+8J//oHfvIiXIiyO+a4j62YukFf9CZ2QYHS9X1j6doRR4IYRVUPXq03h4IoF8iMOtMuyp8DHbv3Ln2qavjY6WI2ufzlCm7BNCWB2dnsrpFc9xLGMegWPScW7XH/3BB6hatYyOZnVkyj4hRImi7B2p1vcLWj5yAedRb8OPP7J7UR0Of9mKtAsnjI5XYkiBF0JYLeVaHiZMIGNfHPZVa3Gi9ha2bPTl5KKBZKTeMDqe1ZMCL4SwenY1a9Fw2CGalfsKl+TyHKi2iJjvPLi2+vMSPVDK0qTACyFKjPItniToqQsEXHsNhxRF2b6joGtXMnZuMzqaVZICL4QoUZSdHV6PTqbZU5dwmDSDjK1RbI1uzoHZjbiVuMvoeFZFCrwQomQqUwbGjEHv24kHgZystZctO5qUqIFSliYFXghRotlXqkndYbG0qPozHqerZg6Uur5keqm/P2+xAq+UqqmU+k0ptUcptVspNcZSxxJClF4rtyfSevKvNP4qg1FJC7FLeJPyCW44DXgJHniA1D9WGx3RMJa8gk8DXtZaNwJaAS8opRpZ8HhCiFImu3a9z+7/Bwfb7cRuzjzSzh0j6kw39sz24cbBTUbHLXYWK/Ba61Na623mx1eAvYB1jN8VQtiEHNv1rjsITz+N2raD6pfbca7mCbYcbcuRLx8oVQOliuUevFLKDwgGtmTz3EilVIxSKubs2bPFEUcIYSPyatdrX74y/kN+J7RBFJWP1+J47b/YssGXm7MnQ1pacUY1hMULvFLKFVgGjNVaX777ea11hNY6RGsd4uXlZek4Qggbkt92vU5+LWg4/DDNXBZQLc6bsiPDITCQ66u/LI6YhrFogVdKOWIq7gu11ssteSwhROlT0Ha95UOfotYbx2DFClLcrhFtN5ydX3pxLXZlMaQtfpb8FI0CvgT2aq3/Y6njCCFKr0K161UKevWibGQctc725FLVc0Sf782B2QE2N1DKYu2ClVJtgI1AHHC7a//rWuufc9pG2gULIYrbrTMHOPZjfxL9duBwDVrtn4DDi+PAycnoaPliSLtgrfUmrbXSWjfVWgeZv3Is7kIIYYQyVeplDpSqFdUUh1ffgQYNSF72ttXPKJUXGckqhBBAuYBuVH9vB6xfz+XAMsRWfIftX7lz6Y/ZRkcrNCnwQgiRVceOuC3bRf2zQ7hR/jrbU0eyZ7YvNw6VvIFSUuCFEOIuyqEM1frNJbRjAr7xbTnnc5ytO9uSEf4KXL7n095WSwq8EELkwMG9Gv5DNhBabwsNYjpgN/lDdN3aJH0zokTMKCUFXggh8uDkH0rF93+F6GgudK/CnupfsPU7Dy6sfd/oaLmSAi+EEPkVEoLn7J0EXHmFdId0dpYZbxooteN7o5NlSwq8EEIUgLKzw6vHVEJ7nKd2Qg8uVT3Hrp090aOehaQko+PdQQq8EEIUgp1zeWo++T0tm++j0YH+qC++JL1RbRLmPUb69WSj4wFS4IUQ4r6UqVoft3cXw65dnBtaj0N+PxD9oxdJK/9t+EApKfBCCFEUGjSgytStNE2fgn2qA3s8ZrB9gTuXNxvXsVIKvBBCFCHPh14l5PFL1D87hBSP6xyOHg4DBsCxY8WeRQq8EEIUsdsDpVp2SKDBtRdh1SpuPlCPI3Nak3YxodhySIEXQggLcXCvhvPrH8H+/Zx/vhnHa21my+8+nFz8JDr1psWPLwVeCCEsrWZNqr/xJ82c5+FyyY0DVRYSs8SdC+s+sOhhpcALIUQxKd/yaYKeumgaKOWYzpnfXodHHoE9eyxyPCnwQghRjLIOlKpT5V3YvBnatIHr14v8WFLghRDCAHbO5XEc8wYcOgRLloCLS9Efo8j3KIQQIv8qVYJOnSyyaynwQghho6TACyGEjZICL4QQNkoKvBBC2Cgp8EIIYaOkwAshhI2SAi+EEDZKCrwQQtgoKfBCCGGjpMALIYSNkgIvhBA2Sgq8EELYKCnwQghho6TACyGEjZICL4QQNkoKvBBC2Cgp8EIIYaOkwAshhI2SAi+EEDZKCrwQQtgoKfBCCGGjHCy1Y6XUHKA7kKS1bmyp4wghREm1cnsiU9fs52RyCtU9nAnrUp9ewTWKbP+WvIKfB3S14P6FEKLEWrk9kfDlcSQmp6CBxOQUwpfHsXJ7YpEdw2IFXmu9Abhgqf0LIURJNnXNflJS0+9YlpKaztQ1+4vsGIbfg1dKjVRKxSilYs6ePWt0HCGEKBYnk1MKtLwwDC/wWusIrXWI1jrEy8vL6DhCCFEsqns4F2h5YRhe4IUQojQK61IfZ0f7O5Y5O9oT1qV+kR3DYp+iEUIIkbPbn5ax5KdoLPkxyUVAe6CSUioBmKC1/tJSxxNCiJKmV3CNIi3od7NYgddaD7DUvoUQQuRN7sELIYSNkgIvhBA2Sgq8EELYKCnwQghho5TW2ugMmZRSZ4FjRufIRiXgnNEhciDZCkeyFY5kKxxLZvPVWmc7StSqCry1UkrFaK1DjM6RHclWOJKtcCRb4RiVTW7RCCGEjZICL4QQNkoKfP5EGB0gF5KtcCRb4Ui2wjEkm9yDF0IIGyVX8EIIYaOkwAshhI2SAp8HpVS8UipOKRWrlIoxOMscpVSSUmpXlmWeSql1SqmD5j8rWFG2t5VSieZzF6uUesSgbDWVUr8ppfYopXYrpcaYlxt+7nLJZvi5U0o5KaWilFI7zNneMS/3V0ptUUodUkotVkqVsaJs85RSR7Oct6DizpYlo71SartS6kfz98V+3qTA508HrXWQFXzGdh73TmQ+Dlivta4LrDd/b4R5ZD/J+nTzuQvSWv9czJluSwNe1lo3AloBLyilGmEd5y6nbGD8ubsJdNRaBwJBQFelVCtgijlbHeAiMMyKsgGEZTlvsQZku20MsDfL98V+3qTAlyA5TGTeE5hvfjwf6FWcmW6z5knWtdantNbbzI+vYPpPVwMrOHe5ZDOcNrlq/tbR/KWBjsBS83KjzltO2ayCUsobeBT4wvy9woDzJgU+bxpYq5TaqpQaaXSYbFTRWp8yPz4NVDEyTDZGK6V2mm/hGHL7KCullB8QDGzBys7dXdnACs6d+TZDLJAErAMOA8la6zTzKgkY9Avp7mxa69vnbZL5vE1XSpU1IhswA3gVyDB/XxEDzpsU+Ly10Vo3A7phevnczuhAOdGmz7xazVUM8BlQG9NL6FPAh0aGUUq5AsuAsVrry1mfM/rcZZPNKs6d1jpdax0EeAOhQAMjcmTn7mxKqcZAOKaMLQBP4LXizqWU6g4kaa23Fvex7yYFPg9a60Tzn0nACkz/yK3JGaVUNQDzn0kG58mktT5j/k+YAczGwHOnlHLEVEAXaq2XmxdbxbnLLps1nTtznmTgN+ABwEMpdXs2OG8g0ahccEe2ruZbXlprfROYizHnrTXwmFIqHvgW062ZmRhw3qTA50IpVU4p5Xb7MdAZ2JX7VsXue+Bp8+OngVUGZrnD7eJp1huDzp35/ueXwF6t9X+yPGX4ucspmzWcO6WUl1LKw/zYGXgY03sEvwF9zasZdd6yy7Yvyy9sheked7GfN611uNbaW2vtBzwB/Kq1HoQB501GsuZCKVUL01U7mOav/UZrPcnAPJkTmQNngAnASmAJ4IOp1XJ/rXWxv9mZQ7b2mG4xaCAeeDbLPe/izNYG2AjE8fc90dcx3es29Nzlkm0ABp87pVRTTG8G2mO6GFyitZ5o/n/xLaZbINuBJ81XzNaQ7VfAC1BALDAqy5uxxU4p1R54RWvd3YjzJgVeCCFslNyiEUIIGyUFXgghbJQUeCGEsFFS4IUQwkZJgRdCCBslBV6UOEopwz72liXDz0opD/PX83msO0sp1fquZfWVUpHmjod7lVIR5uVBRnSOFLZJCrwoNbKMIrxvWutHzCMoPYBcCzymLpF/3bXsI/7uFtkQ+Ni8PAiQAi+KhBR4YROUUrWVUqvNTeE2KqUamJfPM19BbwH+z/z9R0qpzUqpI0qpvub1JmbpIZ6olJprXv6kue94rFLqc6WUvXl5vFKqEjAZqG1+fmo2uRoCB7TW6Xc9VQ1TwykAtNZx5v7gE4HHzft7vOjPlChNZKCTKHGUUle11q53LVuPadTiQaVUS+ADrXVHpdQ8TKNre2qt083flwMex9SU6ntzf+7b+/HANLJ0CHAd+D+gj9Y6VSn1KfCX1nqBuc9ICOAK/Ki1bpxD1pcwdRGcc9fyoZg6Dm4G1gJztdbJSqkhQIjWenRhz48QtxXZS1YhjGLuxPgP4DtTCxIAsraJ/e6uK+iV5iZee5RSmS2Czf1Lvgb+o7XeqpQaDTQHos37dabgDcm6AEPvXqi1nquUWoNpkpSewLNKqcAC7luIXEmBF7bADtNVclAOz1+76/us/T9UlsdvAwla67lZnpuvtQ4vTCillAvgobU+md3z5uVzgDnKNNVhtq8ChCgsuQcvSjxz//SjSql+YLoSL+jVsFKqB9AJ+FeWxeuBvkqpyuZ1PJVSvndtegVwy2G3HTB1EMzueF3NbYJRSlXFNCFEYh77E6JApMCLkshFKZWQ5eslYBAwTCm1A9iN6bZHQbyEaYad22+oTtRa7wHewDSj105MMxplbeOL1vo88IdSalc2b7J2A1bncLzOwC5z3jWY5hE9jekXQiN5k1UUBXmTVQgLUUptA1pqrVONziJKJynwQghho+QWjRBC2Cgp8EIIYaOkwAshhI2SAi+EEDZKCrwQQtgoKfBCCGGj/h+xg1SJD+WtxAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "print(zufuss(25))\n", "\n", "plt.scatter(25, zufuss(25), c='g', label='Prediction')\n", "\n", "plt.plot(Lernzeit, polyline[0]*Lernzeit + polyline[1], 'r', label='np.polyfit')\n", "plt.plot(Lernzeit, zufuss(Lernzeit), '--y', label='Zufuß')\n", "plt.scatter(Lernzeit, Note, label='Datenpunkte')\n", "plt.xlabel('Lernzeit / St')\n", "plt.ylabel('Note')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }